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Because of the recent growth in popularity of social websites, such as MySpace, Facebook
and Last.fm, there is an increasing interest in ways to analyze extremely large friend-
ship networks with even millions of nodes. These huge networks provide a practical test
ground for new network algorithms. The network analysis methods can also be applied
to other networks than social networks, such as interactions between proteins and links
between web pages.

Social networks have typically structure: there are dense groups of nodes and some nodes
have disproportionately many connections. The structure emerges, because friendships
are not formed randomly. Instead, people tend to become friends with those who are
similar to themselves. This can be called homophily. There are also other factors that
guide the formation of friendships, such as geographical location and membership in
common activities.

The M0 algorithm finds clustering structure in networks with homophily by Bayesian
statistical inference. The algorithm is based on a generative model for creating the edges
of a network based on latent components. The model parameters are inferred using Gibbs
sampling. Because of homophily, the nodes that belong to the same cluster are likely to
have similar traits.

In this master’s thesis, an effective implementation of the M0 algorithm is introduced,
which uses a balanced binary tree for storing the component probabilities. The imple-
mentation can be used on networks with even millions of nodes. The algorithm is tested
on a range of well studied small networks and on a friendship network with over 600 000
users crawled from the Last.fm service.

The algorithm finds meaningful structures in networks of various scales and the results
are comparable to those obtained with hierarchical clustering methods. The strength of
the method is the fuzzy assignment of nodes to clusters, where a node can belong to a
number of clusters simultaneously. However, the choice of model hyperparameters is
often inconvenient.
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Sosiaalisten verkkopalveluiden, joita ovat esimerkiksi MySpace, Facebook ja Last.fm, vii-
meaikaisen suosion kasvun myötä kiinnostus erittäin suurten ystävyysverkostojen ana-
lysointiin on kasvanut. Näissä verkoissa on jopa miljoonia solmuja, joten ne tarjoavat
hyvän testiympäristön uusille verkkoalgoritmeille. Verkkojen analysointimenetelmiä voi-
daan hyödyntää myös muihin kuin sosiaalisiin verkkoihin, kuten proteiinien välisiin vuo-
rovaikutusverkkoihin ja verkkosivujen välisiin linkkeihin.

Sosiaalisilla verkostoilla on tyypillisesti rakenne: niissä on tiheitä solmuryhmittymiä, ja
joillakin solmuilla on suhteettoman paljon yhteyksiä. Rakenne syntyy, koska ystävyydet
eivät muodostu satunnaisesti. Ihmiset sen sijaan tapaavat ystävystyä samanlaisten ihmis-
ten kanssa. Tätä voi kutsua homofiliaksi. Ystävyyksien syntyyn vaikuttavat myös muut
tekijät, kuten maantieteellinen sijainti ja yhteisiin aktiviteetteihin osallistuminen.

M0-algoritmi löytää klusterirakenteen homofiilisistä verkoista bayesilaisen tilastollisen
inferenssin avulla. Algoritmi pohjautuu generatiiviseen malliin, jossa verkon sivut luo-
daan latenttien komponenttien perusteella. Mallin parametrien tilastollisessa päättelyssä
käytetään Gibbs-otantaa. Homofilian vuoksi samaan klusteriin kuuluvilla solmuilla on
todennäköisesti yhteisiä piirteitä.

Tässä diplomityössä esitetään M0-algoritmille tehokas toteutus, joka käyttää tasapainotet-
tua binääripuuta komponenttien todennäköisyyksien tallennukseen. Toteutus toimii jo-
pa miljoonien solmujen verkoilla. Algoritmia testataan joukolla aiemmin tutkittuja pieniä
verkkoja ja Last.fm-palvelusta kerätyllä ystävyysverkolla, jossa on yli 600 000 käyttäjää.

Algoritmi löytää merkityksellisiä rakenteita monenkokoisista verkoista, ja tulokset ovat
vertailukelpoisia hierarkisilla klusterointimenetelmillä saatujen tulosten kanssa. Mene-
telmän vahvuus on solmujen sumea klusterointi, jossa solmu voi kuulua samanaikaisesti
useaan klusteriin. Hyperparametrien valinta on kuitenkin usein hankalaa.
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klusterointi, ystävyysverkko, bayesilainen päättely,
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Chapter 1

Introduction

This chapter motivates the need for creating new methods for analyzing social net-
works and presents the aims of the research in this context. These aims are formalized
in the form of research questions. Finally, the contributions of the thesis and the
structure of the forthcoming chapters are detailed.

1.1 Background

The subject of this thesis is interdisciplinary. This is why the aim is to combine infor-
mation and methods from multiple scientific disciplines, with the hope that a broader
picture of the problems at hand will emerge. Furthermore, this approach is interesting
for a researcher, because seemingly unrelated subjects studied by physicists, sociolo-
gists and computer scientists intertwine naturally in network research.

1.1.1 Concepts of interest

Traditionally, sociologists have analyzed social networks by interviewing people about
their social relationships or observing the social behavior of a group of people. The
typical size of networks studied has been tens or hundreds of persons (Newman,
2003a). However, in recent years two developments have made it possible to study
the social interaction of much larger numbers of people than before: The emergence
of new communication channels, such as mobile phones and online services, and the
availability of IT infrastructure for storing and analyzing large amounts of data.

Working with large networks is computationally hard. In the past, good algorithms
have been created for analyzing small social networks with only tens or hundreds of
nodes, but using them on larger networks is infeasible. The current challenge is to
create algorithms that can be used on networks with millions of nodes, are fast and
are able to mine meaningful information.

1



CHAPTER 1. INTRODUCTION 2

Methods for analyzing networks are not limited to only the study of social inter-
actions. Many different systems can be represented as network structures, such as
metabolic networks in biology, or optimization of large infrastructures in technical
problems (Newman, 2003a). Concepts and algorithms that have been found to be
useful in studying one type of networks are often applicable to other kinds of net-
works as well.

Social networking services, such as MySpace and Facebook, have gained huge pop-
ularity in recent years. Users of these services can create profiles for themselves and
list their friends for other users to see and browse. Based on these friends lists, a net-
work can be created, where nodes are persons and edges friendships between them.
These friendship networks provide a good test ground for network algorithms, because
they make it possible to compare the network topology with personal attributes, such
as demographics and interests, on a much larger scale than what has been possible
before.

1.1.2 Aims of the research

In data mining, the amounts of data are often so large that it is difficult to see any
relevant content by just looking at them. Unsupervised learning methods try to make
large amounts of data more easily analyzable by reducing the complexity or by finding
a smaller number of dimensions that represent the relevant structures. Clustering is
an unsupervised method, where the aim is to group similar elements together. The
results of clustering can be used for visualization and further analysis.

One property affecting the formation of clusters in networks is that individuals sharing
some common traits, tend to link to each other. This tendency of individuals to
associate with similar others is called homophily. Homophily in many different forms
has been observed in a large number of social networks (McPherson et al., 2001).
Moreover, homophily leads to the formation of communities in friendship networks
that tend to consist of people who share interests.

This master’s thesis presents an algorithm called M0 for finding clusters and traits in
a network with homophilic structure using Bayesian statistical inference. The main
idea behind the algorithm is that there are a number of mutually exclusive traits,
which explain the formation of edges in the network. Each node in the network has
its own proportions of the traits, that is, a node may have more than one trait. The
model behind the algorithm assumes that each edge in the network represents one
trait. Thus, the more two nodes have traits in common, the more likely they have an
edge between them.
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Several methods have been developed for network clustering. However, many of
the popular approaches do not take noise in the data into account, or it is difficult to
understand the assumptions behind the models. Because of the generative foundation
of the M0 algorithm, it can relatively easily be made to handle noisy and missing
data. Moreover, instead of giving just one fixed clustering of the network, Bayesian
estimation of the model gives probabilities for the different values of the clustering
parameters, and an explanation of the process that could have generated the structures
in the network.

Despite the advantages, the generative framework has some shortcomings. Notably,
the models often include parameters that are difficult to find values for, the methods
require an understanding of Bayesian estimation, and it is often difficult to make
efficient implementations of the methods.

In this thesis, the aim is to discuss the processes that guide the formation of social
contacts between individuals and the ways traits affect social structures. The M0 algo-
rithm is presented and discussed from this perspective. Finally, the algorithm is tested
on a range of networks, including a friendship network from Last.fm social network
service. Specifically, it is evaluated how well the algorithm is able to reveal traits from
the networks.

1.2 Problem setting

The research problem is stated as follows:

By using only friendship network topology, can individuals be clustered into groups that differ in
traits such as interest, language and gender?

To address this problem, research subquestions are specified:

1. Based on previous research, is it plausible that friendships can be used to predict
traits of the individuals?

2. Can the M0 method be used in finding clusters from a friendship network?

3. Based on the clustering, is it possible to make some conclusions about the traits
affecting the friendships of the individuals?

4. Does the algorithm find local clusters in a network (communities) or more dif-
fuse latent component structures (traits)?

5. How well does the method compare with other approaches in terms of quality
of the clustering results and algorithm speed?
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1.3 Contributions of the thesis

This thesis presents an optimized implementation of the M0 clustering algorithm,
which can be used even with huge networks. The algorithm was conceptually devel-
oped by Janne Sinkkonen (Sinkkonen et al., 2007). The author was responsible for
the empirical work related to the implementation, optimization and testing of the
algorithm, as documented in this thesis. The algorithm is compared to sociological
models, and testing of the algorithm is carried out both on small networks and on a
large friendship network.

1.4 Structure of the thesis

After this introductory chapter, Chapter 2 starts with explanation of the basic concepts
of networks to give a common ground for discussing networks in general, and social
networks in particular. Friendship networks are introduced, as well as theories about
friendship from sociology.

Chapter 3 deals with data analysis and clustering and introduces approaches for net-
work clustering. In chapter 4 the concepts of generative models and Bayesian param-
eter inference for the models are presented, and some background understanding on
typical distributions and sampling challenges is given to support the understanding
of the algorithm.

The algorithm and its implementation are presented in Chapter 5. First, two different
methods for estimating the model parameters are introduced: one for a fixed number
of parameters, and another that automatically adjusts to the number of parameters.
Next, three different algorithms based on the model are given, and the efficiency of
the algorithms is discussed.

Chapter 6 presents the experimental setup for testing the algorithm and Chapter 7
details the results of the experiments. Finally, in Chapter 8, conclusions are drawn
based on the experiments, and directions for future research are given.



Chapter 2

Friendship and network structure

This chapter covers the basic concepts related to networks and methods for analyz-
ing them. Friendship networks are introduced and the formation of friendships and
the effect of similarity between individuals in social networks is discussed in detail.
An understanding of friendship networks is necessary to be able to create algorithms,
which model meaningfully these real-world structures, and to evaluate their effective-
ness. Luckily, research done in sociology for already decades can be used to develop
this understanding.

2.1 Common properties of networks

In recent years, there has been a strong interest in studying networks, ranging from
sociology and epidemiology to applied physics and the study of biological networks.
Because of the varying backgrounds of the researchers and different scientific com-
munities, information flow between the disciplines has been slow. To give an idea of
the wide range of approaches used, a sketch of the different disciplines working with
networks is presented in Figure 2.1.

The basis of network research is formed of graph theory, which originates from the fa-
mous paper by Euler (1736) about the bridges in Köningsberg and how they connect
the different parts of the city (Newman, 2003a). Sociologists have studied social net-
works from the beginning of the 1930’s. They have made significant contributions to
the statistical methods for analyzing networks and to the empirical analysis of social
networks.

In the last ten years, applied mathematicians and physicists have joined in the network
research, trying to develop a general theory of networks. This recent school of research
is often referred to as complex networks research, and it is concerned with the similarities
and differences of the various types of networks (Costa et al., 2007).

5



CHAPTER 2. FRIENDSHIP AND NETWORK STRUCTURE 6

Figure 2.1. A sketch of some of the different disciplines studying networks. In the bottom are some of
the fields that provide the theoretical background that the network sciences build upon.
In the middle are the scientific communities doing methodological studies, and in the
top the sciences that utilize the methods created by the network communities. Of course,
in practice, the distinctions between the different disciplines are neither strict nor well
specified.

It is useful to define some basic concepts about networks to have a clear vocabulary for
dealing with the intuitive concepts. Formally, a network is a set of pairwise connected
entities. In graph theory, these items are called vertices, and the connections between
vertices are called edges. Together the sets of vertices and edges form a graph.

The number of edges connected to a node is called the degree of the node. A network
with an edge between every node is called fully connected, and for a network with N

nodes the number of edges E = N(N ≠ 1)/2. Real-world networks are typically not
densely connected, but instead sparse, that is, it is very unlikely that there is an edge
between two nodes selected by chance. In sparse networks N ≥ E (Clauset et al.,
2004).

Because of networks have been studied by many sciences, naming of even the most
basic concepts is far from clear. Vertices are often called nodes in computer science,
while in social sciences they are typically referred to as actors. Edges are sometimes
called links in computer science, bonds in physics and ties in social science. This thesis
uses the terms “node” and “edge” for the sake of consistency.
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(a) (b) (c)

Figure 2.2. Illustrations of an undirected network (a), a directed network (b) and a weighted undi-
rected network (c), each with 7 nodes and 15 edges. Illustration adapted from Boccaletti
et al. (2006).

Any process where individual elements interact can be pictured as a network. Some
typical classifications of networks can be seen in Figure 2.2. The edges of a network can
be directed or undirected (Newman, 2003a). In the Figure 2.2(b) showing the directed
network, arrows indicate the direction of the link. In directed networks, there is a
distinction between directed (one-way) and mutual (undirected, two-way) connections
between nodes. Some processes are more easily represented with directed edges, for
example hyperlinks between web pages, while others, such as roads connecting cities,
are naturally represented as undirected connections.

Another typical way to enrich a network model is to add weights to network edges to
describe the strength of the connection. For example, in social networks weights may
represent the amount of communication between persons. In the weighted network
of Figure 2.2(c), the line thickness corresponds to the edge weight.

In addition to adding the link directions and weights, the simple model for networks
can be extended in several ways. For example, a network could contain different
types of edges for describing different kinds of relationships between nodes (Newman,
2003a). In social networks, different relationships could be for example friendship,
kinship, information transfer or emotional support. Furthermore, many types of attributes
can be associated to the nodes.

Many models of networks consider the network as unchanging or at least as a static
snapshot of a process at a certain point of time. However, dynamic networks with
new edges and nodes being added and old ones fading away have also been studied
(Berger-Wolf and Saia, 2006, Kempe et al., 2000, Kleinberg, 2003, Leskovec et al.,
2005) and recently even rich models for network growth have been proposed (Qamra
et al., 2006, Zheng and Goldenberg, 2006). Studying networks that change in time
leads to additional challenges for data analysis because of the larger amounts of data
and the added complexity.
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Often, when a network starts to form, it first consists of many isolated components not
connected to each other. However, after a while most of these components connect
forming a giant component, which is the connected subgraph that contains the majority
of all the nodes. A network is said to percolate when a giant component forms. The
mathematical percolation theory deals with the formation of connected subgraphs in
random networks (Albert and Barabasi, 2002).

The potential scale-free structure of networks has received much attention (Holme,
1994, Newman, 2003a). Networks are said to be scale-free if their degree distribution
follows the power-law, that is pk ≥ k≠– for some constant exponent –, where pk

is the fraction of nodes in the network that have degree k (Newman, 2003a). The
name scale-free comes from the fact that the power-law distribution has no natural
scale (Dorogovtsev and Mendes, 2003, page 12), i.e., the shape of the distribution is
the same in all scales. A degree distribution following the power-law is linear when
plotted on a log-log scale.

A weaker statement than to say that a network follows the power-law is to state that
a network has a heavy tail (i.e., a fat tail), which roughly means that there are some
nodes with many connections and many nodes with just a few connections. Even
though many networks are said to have a scale-free structure, in reality, they would fit
also other distributions having a heavy tail (Clauset et al., 2007).

In the classical small-world experiments by Stanley Milgram in the 1960’s, randomly se-
lected individuals were asked to make acquaintance chains to each other (Travers and
Milgram, 1969). In the experiments, it was noted that the mean distance between
individuals was less than six. Watts and Strogatz (1998) noted that short average con-
nections between people form in networks with high amounts of dense subgraphs
(or large clustering coefficient, covered in more detail in Section 3.3.1) and where the
shortest distances between nodes are short on average. They defined these networks
as small-world networks. Networks which are scale-free are also small-world. However,
even networks that do not follow power-law can be small-world, as long as they fulfill
the two requirements mentioned above (Amaral et al., 2000).

Several models have been created to explain what types of underlying processes af-
fect the emergence of networks and their statistical properties. A simple but useful
model is the random graph studied by Rapoport (1957), and Erdős and Rényi (1959).
In this model, undirected edges are created randomly between a fixed number of
nodes. However, this model does not explain the heavy tails observed for many dif-
ferent types of networks. An improvement to this is the preferential attachment model
proposed by Barabási and Albert (1999) where edges are more likely to be added to
nodes that already have many edges. This leads to a scale-free node degree distribu-
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tion. Newman (2003a) provides a good overview of the many other models that have
been generated to explain different aspects of network emergence.

2.2 Analyzing social networks

A social network is a representation of social relationships such as friendship, kinship,
or information exchange between a set of individuals. The term social network is said
to originate from Barnes in 1954 (Wasserman and Faust, 1994). In the simplest form,
a social network is a static picture of the social connections between individuals at a
certain point of time. In sociology, the field of studying social networks is called social
network analysis (SNA).

The aim of social network analysis it to make a model of the social interactions be-
tween individuals, and then study how this structure affects the functioning of the in-
dividuals and groups in the network (Wasserman and Faust, 1994). To collect the data
on a social network typically requires sending questionnaires to people, asking them
to describe their relationships, or observing their behavior (Newman, 2003a).

Traditionally, sociologists have studied only small and well-bounded networks, with
largest networks typically having less than one hundred nodes and almost never more
than a thousand (Newman et al., 2006). Nowadays, by examining mobile or online
communication, huge social networks can be analyzed with thousands or even mil-
lions of nodes.

A problem with data that is collected automatically from communication between
individuals is that it is often in a raw form and it may have lots of errors and other
deficiencies. A typical challenge is that the data sets describe communication only via
one communication channel, such as email or a certain online forum. This selective
sampling can make the data biased, and observations made based on one communi-
cation channel might not be generalizable.

While social networks study is currently one of the most active fields in network anal-
ysis, many different kinds of networks can be analyzed using similar methods. These
include biological networks, such as the interaction between proteins, communication
networks, such as networks of computers connected to the Internet, and networks in
economics, for example for analyzing trade between countries.

There are a number of software applications that can be used in social network analysis.
Popular applications include Pajek, UCINET, and NetMiner (Huisman and van Dui-
hin, 2005). With them, measures such as centrality and clustering can be computed.
However, researchers who wish to create new metrics need to implement applications
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of their own. This is why a large number of applications intended mainly for the
personal use of a small number of researchers exist.

2.3 Friendship networks

People are good at forming friendships. Typically as soon as individuals are gathered
together, for example in a party or at a workplace, they start interacting with others.
Based on these interactions, friendly relationships and friendships start to form. These
relationships can be pictured as a friendship network where nodes (individuals) are
connected if they are friends with each other.

Typically sociologists and ethnographers have analyzed friendship networks by inter-
viewing people and asking, whom they consider to be their friends. Nowadays, in
addition to traditional friendship research methods, it is also possible to study friend-
ships in online communities based on automatically collected data. People commu-
nicate with each other via different types of channels, such as email, chat rooms, and
message boards. They also participate in online events, and join in different commu-
nities.

Together, the different methods for online communication are covered by the term
computer mediated communication (CMC), used by researchers from fields such as lin-
guistic studies, anthropology and communication studies (Herring, 2002). The on-
line communication between users provides huge amounts of friendship data for re-
searchers to analyze.

The friendship networks people have in the physical world and in online communi-
ties are not the same (Boyd, 2006). Some connections between people are present
in both the online and the physical world, while others are only online or in real life.
There are lots of people who do not want to create explicit friendship networks on-
line. Moreover, an online friendship is often a much weaker connection between two
persons than a friendship in the physical world. For example, some users collect huge
amounts of online “friendships”, but do not know any of the people personally. Thus,
based on online friendships, one should not make too hasty conclusions on the social
relations between the users.

A practical method for analyzing relationships in online communities is to observe
how people communicate via different types of channels (Haythornthwaite and Well-
man, 1998, for example). Those who communicate a lot with each other typically
have a close social connection. Thus, this communication information can be used
as an indicator of the friendships between the persons.
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Another approach for studying online contacts between people is to have the users of
an online service themselves list, who they consider to be close acquaintances. Luckily,
this type of information can be easily gathered from social networking sites, such as
MySpace, Friendster, and Orkut. In these online services, an important function is
that users can list, who are their “friends”, and ask other users to form friendships
with them. Based on these lists a network of friendships between the users can be
formed.

The best approach is to combine multiple data sources. In addition to the two afore-
mentioned approaches, there are several other methods to infer relationships between
users, such as studying links between web pages of users (Park, 2003) and observ-
ing memberships of users in online communities or their participation in discussions
(Paccagnella, 1998). Also traditional methods from social network analysis, such as
questionnaires and interviews of users, can be combined to the other approaches to
obtain a better picture of the relationships between the individuals.

2.4 Formation of friendships

Having a good grasp of how networks of friendships evolve requires an understanding
on the processes that give rise to friendships. Below, first the concept of friendship
is covered briefly and next the processes that govern the formation of friendships
are analyzed from three perspectives: using focus theory (Feld, 1981), via the concept
of homophily (Lazarsfeld and Merton, 1954), and by discussing the effect of physical
proximity.

2.4.1 Challenges in defining friendships

Even though everybody has an idea of what friendship is, it is rather difficult to
give a precise definition. This is because the concept of friendship is ambiguous and
vague with many different overlapping meanings (Van De Bunt et al., 1999). In ad-
dition, friendship in conceived in a multitude of ways in different societies (Keller,
2004).

The formation of friendships is a complex process. Friendships change over time,
as old friendships weaken or die while new relationships emerge. Individuals have
the chance to affect their friendships by investing different amounts of effort into
them. Friendships may form via a number of social processes, such as when a mutual
acquintance introduces two persons to each other, i.e., via transitive linking (Ebel et al.,
2003). Furthermore, people may have different levels of friendship with different
people (Van De Bunt et al., 1999).
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2.4.2 Focus theory

According to Feld (1981), a problem with social network analysis is that patterns are
extracted from social tie structures without taking into account the social structures,
in which people operate. Focus theory proposed by Feld (1981) aims to provide a
theoretical model of how people form friendships. It is based on the idea that people
take part in a number of foci, which can be “social, psychological, legal or physical entities.”
Some typical foci given as examples are family, workplace and voluntary organiza-
tions. The study of social networks should take into account the foci in which people
participate.

A focus is constraining because it leads individuals, who belong to it, to spend time
and energy in participating in the activities of the focus (Feld, 1981). This makes
possible the formation of friendships, because two individuals that share a focus are
more likely to interact with each other than two random people. According to the
theory, the more the people interact, the more likely it is that they will develop positive
feelings towards each other.

Some foci involve more constraint while others constrain their members less. If there
is no constraint, the focus does not exist. For some foci, such as families, the members
of the focus are forced to interact much and often. Other foci require less interaction
from their members, for example city neighborhoods. The more constraining a focus
is, the more likely it is that two individuals, who belong to the focus, are connected
to each other.

The model explains the formation of clusters in networks. Clusters tend to form
around different foci, in which the individuals participate. Feld (1981) states that
clusters with few members tend to be strong while clusters with many members are
often loose in structure. However, the opposite is also possible (Feld, 1981).

Feld (1981) emphasizes that although foci tend to produce structures in social interac-
tions, not all structures arise from foci, but people may also meet by chance. However,
interaction formed around foci has structural significance.

2.4.3 Homophily and interests

People tend to communicate with those who are in some way like them. This tendency
to interact with similar people is called homophily (Lazarsfeld and Merton, 1954) and
is well expressed with the saying “Birds of a feather flock together.” The opposite of
homophily is heterophily, which occurs, when people with different attributes are likely
to be connected to each other. An example of this would be a dating network, where
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most edges would be between males and females and the network would exhibit strong
heterophily by gender.

The forming of homophilic relationships is one of the first properties analyzed by
the early social network researchers (Macskassy and Provost, 2004). The original def-
inition on homophily by Lazarsfeld and Merton (1954) made a distinction between
homophily by status and by value. Status homophily means that individuals with similar
status in the social hierarchy tend to associate with each other. Value homophily means
that people, who are intrisically similar in some way, have a tendency to associate with
each other.

According to McPherson et al. (2001), the effect of homophily is additive in social
interactions. That is, people who are similar to each other in more than one factor
will have an greater probability of being connected.

The concept of assortative mixing in networks is closely related to homophily. Assor-
tative mixing is the tendency for nodes in networks to be connected to other nodes
that are like them in some way (Newman, 2003b). A special case of assortative mixing
is mixing by node degree. This means that nodes with lots of neighbors tend to be
connected to others with many connections. Confusingly, often the term assortative
mixing is used specifically when talking about mixing by node degree.

Newman (2003b) has found that social networks tend to exhibit assortative mixing
by degree, while communication networks and biological networks tend to have dis-
assortative (i.e., dissortative) mixing by degree, which means that nodes with many
connections tend to link to nodes with only a few.

One explanation to homophily is given in the field of social psychology by the similar-
ity effect (Byrne, 1971). It refers to the tendency of people, who have similar attitudes,
to be attracted towards each other. In other words, there is a causal relation between
similarity and attraction. Byrne (1971) has studied this causal relation in controlled
experiments and has found out that the amount of attraction between two persons is
a positive linear function of the proportion of personality characteristics they share.
That is, the more attitudes two persons share, the stronger the attraction.

Another explanation to the formation of homophilic relationships is the self-catego-
rization theory by Turner et al. (1987), which states that people categorize themselves
and prefer to interact with those who belong to the same category as themselves.
Moreover, communication is easiest with similar people because they have a smaller
risk of misunderstanding each other (Ibarra, 1992).

A third process leading to homophily in social relationships is that people who have
a social relationship, have an effect on each other. Thus, the interests and attitudes of
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one person may affect those of the other and this may lead to the two persons sharing
interests and attitudes. In a way, this is the opposite of the similarity effect, because
the causal relationship is reversed so that the relationship between two individuals
leads to similar attitudes.

Homophily not only connects similar people but at the same time separates different
people (Yuan and Gay, 2006). Newman (2003b) notes that strong homophily tends
to break a network into separate communities. For example, in a social network with
people speaking different languages, the network might break up into communities
speaking the same language, with only those speaking multiple languages connecting
the communities.

Empirically homophily has been evidenced in a large number of social networks based
on attributes such as age, gender, and status. According to McPherson et al. (2001),
in empirical studies race has been found to be the strongest factor in social relation-
ships. After race, the strongest factors are age, religion, education, profession, and
gender.

Homophily can be also seen in the online world. Studies of an online dating system
showed that, just like in the offline world, the users of the system sought much more
often people that are similar to them than what chance would predict (Fiore and
Donath, 2005). Adamic and Adar (2003) noticed that students in MIT and Stanford
tend to link from their homepages to others who are similar to them. Adamic et al.
(2003) analyzed Club Nexus, an online community at Stanford University. They
found out that users had different degrees of homophily depending on the terms
they used to describe themselves. Users describing themselves as “sexy” had a much
higher chance of connecting to others with the same description than those describing
themselves as “intelligent” or “responsible”.

In marketing research, it has been noted that the more homophilic a relationship
between two individuals is, the more likely it is to cause word of mouth recommen-
dations (Brown and Reingen, 1987). Moreover, Brown and Reingen noted that strong
links where more likely to cause recommendations than weak links. Bruyn and Lilien
(2004) have noted that the similarity of values and interests between sender and re-
ceiver affects the appeal of word of mouth communication from the sender. However,
they state that this effect is stronger for personal products requiring a degree of con-
fidence (e.g., a physician) than for impersonal products (such as a television). For
impersonal products, perceived authority or social status, such as age or expertise on
the topic, have more influence (Bruyn and Lilien, 2004).
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2.4.4 Theories of proximity

In addition to similar interests or attributes, also physical proximity explains the for-
mation of communication networks between individuals. This is because people,
who live close to each other, have more chances to interact and meet with each other.
The tendency to form connections to those who are physically close to oneself is
often called the propinquity effect in social psychology (Kadushin, 2004, see for exam-
ple).

The effect of proximity has been observed in a number of different environments.
Zahn (1991) has noted that in an office setting, when physical distance between two
individuals increases, the probability of them engaging in face-to-face communication
becomes significantly smaller. By studying the communication between engineers in
R&D organizations Allen (1977) stated that when distance between two persons grows
to over 30 meters, the chance of communication becomes as small as if they were miles
apart.

Online communities do not have all the burdens of geographical communication,
because in theory it is as easy to communicate online with someone who is next to you
as it would be with someone who is on the other side of the world. Cairncross (1997)
among others has even suggested that communication technology makes the effect of
distance vanish as people can communicate effectively over large distances.

Nevertheless, the tendency to form relationships with those who are geographically
close, has also been observed in online communities. By studying the online com-
munities of bloggers using LiveJournal, Liben-Nowell et al. (2005) noted that approx-
imately 70 percent of friendships can be explained by geography.

People from different countries or even different cities tend to have separate subcul-
tures and even speak different languages. This is why even in online environments it
can be easier to communicate with those who are physically close, than with those,
who live in more distant places, even though one might never meet the people face-
to-face.

Another explanation for the geographical nature of online communication is that
online communities reflect also social interactions of the physical world. Based on
interviews with users, Boyd (2006) tells that in Friendster and MySpace, two common
reasons for friendship with other users are that they are actual friends, and that they
are acquaintances, family members or colleagues.
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2.4.5 Relationships between the theories

Each of the three theories about friendship formation mentioned above, that is, the
focus theory, homophily, and the propinquity effect, can be described in terms of
traits of individuals. For the focus theory, the traits of a person are the different
foci the person participates in. Because of the constraints on the foci, some traits
are stronger while others are weaker. Homophily is clearly related to traits, since the
more similar two persons are in terms of a number of features, the more likely they
are to interact. From this point of view, the propinquity effect is just a special case of
homophily, where the closer people are in physical space, the more likely they are to
interact.

These various kinds of traits explain together a large part of friendships formed by a
person. Some traits for an individual could be, for example, ”lives close to London”,
”enjoys classical music”, ”is part of a focus consisting of his family” and ”is male”. Although
the features are quite different, they are likely to be additive, that is, the more two
people share traits, the more likely they are to form friendships.

The general nature of the traits serves as a motivation for the M0 model presented
in Chapter 5. However, sometimes it is difficult to describe exactly what traits have
caused some properties of networks, since traits related to demographics, interests
and geography are often overlapping. These challenges are given thought to when
analyzing the experimental results in Chapter 7.



Chapter 3

Data analysis by clustering

Finding meaningful structure in networks is a type of data analysis problem, where the
idea is to take a network data set and distill some meaningful information from it, such
as a clustering of the network or some statistical properties of the network, and then
to interpret the network data based on the results. This chapter starts by introducing
the basic concepts of data analysis and clustering. Next, clustering of networks is
discussed and a number of deterministic and probabilistic clustering algorithms are
presented.

3.1 Data analysis

Berthold and Hand (1999) give a concise definition for data analysis: “Data Analysis is
the process of computing various summaries and derived values from a given collection of data.”
The important point of this definition is that it stresses the word process, that is, data
analysis is not one single event of applying a statistical method, but instead, it involves
making models, trying different approaches and, based on the results, adjusting the
models to better describe the problem.

Tukey (1977) made a classical separation of data analysis into two categories: confir-
matory and exploratory. In confirmatory data analysis, the aim is to give answers to
certain specific questions (hypotheses) about the data, such as “Can this attribute be pre-
dicted from the value of these?” In contrast, a typical question in exploratory data analysis
would be “Are there any interesting structures in the data?” (Berthold and Hand, 1999).
A core part of exploratory data analysis methods is using graphics to understand un-
derlaying structures of data. Tukey (1977) considered that not enough emphasis was
given to exploratory methods.

Data analysis has its origins in statistics, but many of the same problems are studied
in machine learning and data mining communities, which originate from computer
science and engineering. Traditionally, machine learning considers data analysis as the

17
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process of learning the parameters or the missing values of a model. In statistics this
is called parameter estimation. Research performed and methods used in statistical and
machine learning communities overlap considerably and nowadays machine learning
can be seen as a modern combination of statistics and computer science.

A classical but still often useful distinction in machine learning is that between su-
pervised and unsupervised learning (Chapelle et al., 2006). In supervised learning, the
system is first taught by using a training set with matching input and output values.
After the system has been taught, it can be used to estimate the output values from
new inputs (Dietterich, 2003). The opposite is unsupervised learning, where no training
set with correct output is known (Dietterich, 2003, Ghahramani, 2004).

Nowadays, it is often difficult to say, whether a problem is closer to a supervised or an
unsupervised learning, since many of the approaches lie somewhere in between, where
the model is being taught with labeled data at the same time as properties about the
unlabeled data are learned. These types of methods, which lay halfway between super-
vised and unsupervised learning, are sometimes referred to as semi-supervised learning
(Chapelle et al., 2006, Zhu, 2005).

3.2 Clustering

In general, clustering means grouping unlabeled observations (Maimon and Rokach,
2005, page 1270). The idea with clustering is to find natural groups of items, which
are in some way similar to each other and share some common properties. In social
networks, clusters are often called communities, cohesive subgroups or cliques, while
in biological protein interaction networks they are called functional modules (Palla
et al., 2005). Clustering methods can be either hard or soft. In hard clustering, an item
is assigned to just one cluster, while in soft clustering (i.e, fuzzy clustering) each item can
belong to multiple clusters with different strengths (Jain et al., 1999).

Clustering methods have been widely studied in data mining and machine learning.
The data that is clustered can be any set of items with discrete or continuous attributes
associated to them. These items can be seen as data points in a high-dimensional
space. The aim of the clustering algorithms is to find groups of items, which have in
some way similar attributes, or are close to each other in the data space. Typically a
distance measure is used in the clustering process to compare which items are similar
to each other and should be assigned into the same cluster (Jain et al., 1999).

Clustering can be seen as unsupervised learning, since it is a function that takes the
items to be clustered as input and outputs the cluster labels for each item. Typically,
clustering is used in exploratory data analysis, where the aim is to see, whether the clus-
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Figure 3.1. Example of a computer generated network with local structure.

ters can give interesting viewpoints to the data being analyzed. However, in practice
different data analysis methods are often mixed together. For example, a data set can
first be clustered to give initial insights into the data. These insights can be then used
as the basis of making hypotheses and confirming them with statistical tests.

3.3 Clustering of network elements

The methods used to cluster network elements differ from those used in clustering
data items in high-dimensional spaces. This is because there is no underlying feature
space in which distance measures between nodes could be directly applied. However,
some of the methods from clustering data items can be also adapted for clustering in
networks (Newman, 2003a).

The idea behind clustering network elements comes from the empirical observation
that edges in real networks are seldom placed randomly. Instead, networks usually
contain groups of nodes that are strongly connected to each other, so that there are
a lot of edges between nodes that belong to the same group and only a few between
nodes that are from different groups. The aim of the network clustering algorithms is
to divide the network so that nodes in the same cluster have many connections be-
tween them and nodes placed in different clusters have only a few connections.

A network which would seem to have some kind of local structure is shown in Fig-
ure 3.1. The visualization has been generated with a spring embedding algorithm, where
forces have been added between nodes and then the system has been relaxed (Fruchter-
man and Reingold, 1991). It seems like the network would separate into three clusters.
However, the clustering of the network would be different depending on what clus-
tering method is used, because the methods are based on different assumptions about
the nature of the clusters.
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3.3.1 Clustering coefficient

Before running any clustering algorithm, it would be interesting to know about a
network, whether there is community or cluster structure in it. One measure for
this is the clustering coefficient of Watts and Strogatz (Newman, 2003a, Watts and
Strogatz, 1998). It quantifies the concept of transitivity, which means that friends of a
person are likely to be friends with each other as well.

Clustering coefficient is defined for a node i as:

ci =
number of triangles connected to node i

number of triples centered on node i
. (3.1)

Clustering coefficient ci describes the connectedness of the neighborhood of node i.
The numerator is the total number of shared neighbors between node i and each of its
neighbors. The denominator is the maximum amount of neighbors they could have
in common. Thus, ci = 1 when the node and all its neighbors are fully connected.
For nodes with degree 0 or 1, ci is assigned 0 (Newman, 2003a).

The clustering coefficient for the whole network is the average

c =
1

n

ÿ

i

ci . (3.2)

For a random network consisting of N nodes that are randomly connected by E edges,
the clustering coefficient crand is d/N , where d is the mean degree of the network
(Dorogovtsev and Mendes, 2003, page 16). Since d = 2E/N ,

crand =
2E

N2
. (3.3)

Confusingly, there are two different definitions for the clustering coefficient. The
other variant and the relationship between the measures is discussed in Newman
(2003a). To make the concepts even more vague, in complex networks research clus-
tering coefficient is sometimes referred to as transitivity of the network although, as
mentioned earlier, transitivity has a more general meaning in social network analy-
sis.

3.3.2 Clustering quality

Networks can be partitioned into discrete groups in a number of ways. The best
approach for validating whether an algorithm has found the correct group structure,
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would be to compare the clustering result to a known group structure of the network.
The problem is that usually this kind of comparative data is not available. Therefore
some statistical measure has to be used to estimate the quality of the clustering.

Modularity Q is a measure for assessing the quality of a group division of a network.
The idea of modularity is that a good division into groups is such that nodes have
many edges within groups and only a few between them. The modularity for a com-
munity is calculated by subtracting from the number of edges within a community the
expected value of the same number for randomized graphs (Clauset et al., 2004). Mod-
ularity of a network is simply the sum of the modularities of all communities.

Q is always between zero and one. In theory, zero would mean that the group division
of the network is purely random, while a value larger than zero would mean that the
group division represents real structure in the network. However, in practice, due to
fluctuations, even random networks may exhibit some group structure and have a
non-zero Q (Guimera et al., 2004).

For a set of groups in a network, a connection matrix is defined, where each member eij

represents the number of edges from group i to group j divided by the total number
of edges in the network. The connection sum ai for component i is defined as ai =
q

j eij and represents the proportion of all edges that connect to vertices in group
i.

When C is the total number of groups, Q can be computed by

Q =
C

ÿ

i=1

(eii ≠ a2
i ) . (3.4)

In a network where edges are placed randomly between vertices, without regard to the
communities of the vertices, eij = aiaj (Gustafsson et al., 2006), and thus Q = 0.

There are some problems with Q. One is that in a network with E edges, it may fail to
find clusters which have less than

Ò

E/2 internal edges (Fortunato and Barthelemy,
2007). Work-arounds have been found for this (Kumpula et al., 2007, Muff et al.,
2005), but no standard alternative has yet emerged.

Modularity has been defined only for a hard clustering. Calculating Q for soft clus-
tering requires that each node is first assigned to its strongest cluster. However, in
this way, a node may belong only to one cluster, which is not a viable assumption in
smooth clustering.

To assess results from smooth clustering of networks, a probabilistic generalization of
Q can be generated. However, based on preliminary tests, the probabilistic Q would
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always seem to be below that obtained by hard assignment. Thus, because the result
can be trivially improved by hard assignment of the nodes, the probabilistic Q would
not seem to be useful for comparing clustering results. Another approach would be to
do a hard assignment of the nodes to multiple communities, as suggested by Zhang
et al. (2007). However, this method requires specifying an arbitrary threshold level for
the hard assignment.

3.4 Algorithms for network clustering

Clustering of networks has been studied in physics, computer science and mathemati-
cal sociology, and many methods for finding meaningful clusters have been proposed.
In recent years, one of the main directions has been to generate algorithms that can
be used with large networks that have thousands or even millions of nodes.

In social network analysis, homophilic clusters are sometimes called cohesive subgroups,
while some researchers in complex network research use the term community. Both
terms can be defined as clusters that are obtained when the network is divided so that
there are a lot of edges within groups and little between them.

Also non-cohesive group types are popular in sociology, such as grouping based on
structural similarity (Kadushin, 2004, Michaelson and Contractor, 1992). In these meth-
ods, the idea is to group nodes that link to the same nodes into clusters. In social
network analysis, grouping of structurally similar nodes is called also block modeling.
The aim is to partition a social network into groups or blocks of individuals who have
similar connections to others in the network (Wasserman and Faust, 1994).

Clustering approaches are often classified as either deterministic or probabilistic (i.e.,
stochastic) (Jain et al., 1999). Deterministic algorithms produce always the same out-
put and pass through the same sequence of states, while probabilistic algorithms in-
corporate randomness in their functioning. Typically probabilistic algorithms assume
that the data comes from a mixture of populations, and the aim is to find the distri-
butions of these populations (Berkhin, 2002). Some deterministic and probabilistic
clustering approaches are presented below.

3.4.1 Deterministic methods

Most deterministic approaches for clustering can be classified as either divisive or ag-
glomerative. For networks, divisive clustering works by removing edges that are between
tightly-bound groups of nodes (Castellano et al., 2004). This divides the network into
disconnected parts. These parts can then be further subdivided to estimate the hi-
erarchical structure of the network. Agglomerative clustering works in the opposite
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direction. It starts by assigning each node into its own cluster, and then the clusters
that have the shortest distance are joined until all nodes are in the same cluster.

Convergence of iterated correlations (CONCOR) (Breiger et al., 1975) is a commonly
used block modeling algorithm. CONCOR is based on calculating correlations for all
pairs of nodes based on the similarity of their neighbors. The correlation between the
nodes is +1 if they have exactly the same neighbors, and ≠1 if the neighbors are the
opposite. In this case, opposite neighbors means that for two nodes ni and nj , none
of the neighbors of ni are neighbors of nj , and all the nodes that are not neighbors
of ni are neighbors of nj .

In practice, however, the correlation typically lies somewhere between these values.
A matrix of the correlations between the nodes is formed and correlations on this
matrix are calculated to obtain a second-order correlation matrix. By repeating the
process on each successive matrix, the correlations typically finally converge so that
all connections get either a value of +1 or ≠1. The nodes connected with +1 are
assigned in the same group. The operation can be repeated recursively on the two
groups to obtain a hierarchical clustering of the network (Breiger et al., 1975, Cyram,
2005). Streeter and Gillespie (1992) note that CONCOR has several weaknesses.
First, it has not been proven that the method actually finds the structurally equivalent
nodes. Moreover, it is unclear, what objective function is being optimized in the
process.

An effective approach to network clustering proposed by Newman and Girvan (2004)
is to maximize the modularity Q of the network. It is believed that optimizing Q of
networks globally is an NP-hard problem (Brandes et al., 2006). Still, there are heuris-
tic search strategies, which can be used to restrict the search space while preserving
the optimization goal. The GN algorithm proposed by Newman and Girvan (2004)
performs the optimization of Q in a divisive fashion.

A fast agglomerative method for optimizing Q, called “Newman’s fast” or NF al-
gorithm, was originally proposed by Newman (2004). An optimized version of the
algorithm for clustering networks with hundreds of thousands nodes was presented
by Clauset et al. (2004). It was soon noticed that the algorithm does not work well
for huge networks. Some further improvements address this problem (Danon et al.,
2006, Wakita and Tsurumi, 2007). The improved version by Wakita and Tsurumi
(2007) has been tested with a social network with over five million nodes, and even
the resulting Q is better than with the algorithm by Clauset et al. (2004). Moreover,
a method proposed by Pujol et al. (2006), which combines spectral analysis and mod-
ularity optimization, seems to provide an effective method for analyzing even large
networks.
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3.4.2 Probabilistic methods

A large part of literature on probabilistic methods originates from stochastic block mod-
eling ideas in sociology and psychometrics (Airodi et al., 2007). The idea with stochas-
tic block modeling is that links between two nodes depend only on the groups of
the individuals, and the groups are considered as independent and identically dis-
tributed (i.i.d.) random variables (Getoor and Diehl, 2005). Nowicki and Snijders
(2001) present a stochastic block model, which supports arbitrary many clusters and
directional, weighted edges. However, according to Daudin et al. (2007), the estima-
tion method of Nowicki and Snijders (2001) cannot be used on networks with over
200 nodes.

Several extensions to the stochastic block model have been presented. Kemp et al.
(2004, 2006) modify the model by adding Bayesian priors to automatically determine
the correct number of clusters. In the mixed-membership stochastic block model by
Airodi et al. (2007) a node may belong to a number of groups with different degrees.
A variational algorithm is used for finding the approximate posterior. Another exten-
sion to the stochastic block model is the mixture model proposed by Daudin et al.
(2007).

A social network can also be represented by assigning positions in a latent space to
the nodes in the network. The first methods to achieve this were presented in 1970’s.
The method by Hoff et al. (2002) uses a finite dimensional latent space into which
the nodes of the network are projected. (Handcock et al., 2007) extend the model by
Hoff et al. (2002) by clustering the nodes in the latent space. The latent space models
have been demonstrated on networks with less than hundred nodes, and it remains
unclear whether the approaches can be used on large networks.

Another interesting probabilistic approach is the latent group model by Neville and
Jensen (2005), which jointly models links, attributes and group memberships of nodes.
In the model, the probability of an edge between two nodes depends on the groups of
the two objects. The authors state that using the EM algorithm on the model would
probably converge into a local maximum. This is why the implementation resorts to
first assigning nodes into groups with spectral decomposition and then estimating the
missing parameters using the Expectation Maximization (EM) algorithm.

One recent method to probabilistic clustering is the mixture model by Newman and
Leicht (2006). In the model, the nodes that link to the same nodes are assigned to the
same cluster, i.e., the method is based on the structural similarity of the nodes. The
likelihood of the model is maximized using the EM algorithm. The model is able to
detect both homophilic and heterophilic structures in the network and it can handle
both directed and undirected edges.



CHAPTER 3. DATA ANALYSIS BY CLUSTERING 25

3.4.3 Conclusions on the clustering algorithms

The deterministic approaches have been demonstrated on a wide range of networks
of different types and sizes. However, the methods typically explore only a small
part of the search space, and the measures they use do not necessarily model the
problems studied realistically. Moreover, noisy data may cause problems with these
methods.

Although the stochastic methods presented above can model rich structures in a net-
work, they would seem to have some limitations. All of the methods have been
demonstrated with networks that have less than a thousand nodes. For many of the
methods, the full posterior distribution is not obtained but instead, a point estimate
of a likely solution is provided. Additionally, a number of tricks are used to overcome
problems with effective inference of the model parameters.

The M0 algorithm that is presented in Chapter 5 can be seen as a type of stochastic
block modeling algorithm. It can be used on networks with hundreds of thousands
of nodes and it can approximate a posterior distribution for the cluster memberships
without having to resort to any ad-hoc solutions.



Chapter 4

Bayesian inference

One challenge of data analysis is that the data is usually not clean. There is always
some missing data, uncertainty and randomness. Bayesian inference provides a natural
method for dealing with these problems.

In this chapter, some background information on Bayesian probability theory, mod-
eling of processes, and inference of model parameters are given. These provide the
basis for the next chapter, where a Bayesian approach for clustering networks is intro-
duced.

4.1 Bayesian probability theory

Probability theory is the mathematical study of random events where uncertainty of
events is dealt with by assigning probabilities to them. The degrees of uncertainty are
presented with real numbers and the sum of the probabilities of all events is one. In
Bayesian probability theory probabilities are not interpreted simply as frequencies of
some event occurrences, but instead as degrees of belief.

In Bayesian analysis, the aim is to estimate the posterior distribution of the unknown
parameters given the data and the prior density of the parameters. The difference
between Bayesian analysis and frequentist analysis is that in Bayesian approach the
parameters are given prior probabilities.

The name of Bayesian inference comes from the fact that the Bayes’ theorem is used
in Bayesian inference to obtain the probabilities of the parameters. The theorem
originates from Thomas Bayes, an 18th century theologian and mathematician. Bayes’
theorem deals with the relationship of two stochastic events x and y,

p(x|y) =
p(y|x) p(x)

p(y)
. (4.1)

26
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In Bayesian terminology, p(x|y) is called the posterior probability, p(x) is the prior
probability of x and p(y|x) is the likelihood. The theorem can now be presented as
(Bishop, 2006)

posterior =
likelihood ◊ prior

normalizing constant
, (4.2)

or, equivalently,

posterior Ã likelihood ◊ prior . (4.3)

Bayesian methods provide means to incorporate beliefs on a certain problem into the
process of data analysis. One example would be a coin toss experiment, where there
might be some reason to believe that the coin is biased (Berthold and Hand, 1999).
The beliefs about the expected behavior of the coin can be taken into account when
choosing the prior probability distribution.

There are two main ways to choose a prior in Bayesian analysis. The first is to use
some information a priori on the parameters, leading to an informative prior. This
information may come from, for example, experts of the domain that is analyzed.
The second case is when there is no information available that can be used in setting
up the prior probabilities, or the information is on a generic level. In these cases one
can use an empirical prior, which is learned from data, or an uninformative prior that
makes as little assumptions as possible.

Although Bayesian methods are often advocated because of the possibility to assign
prior distributions, in reality, the choice of priors is often difficult. The practical
strength of Bayesian methodology comes from the possibility of creating hierarchical
models, which are described below.

4.2 Hierarchical generative models

In machine learning, a probabilistic generative model describes, how a data set, or ob-
servations, can be constructed randomly from a set of parameters.

Generative models with multiple levels of variables are often called hierarchical mod-
els. They consist of observable outcomes, which are conditioned on some hidden
parameters, which themselves are given a probabilistic model using some other pa-
rameters, called hyperparameters. This kind of approach is useful in simplifying com-
plex problems and makes it also possible to use computationally effective strategies
to solving the posterior probabilities (Gelman et al., 2003, page 117).
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Figure 4.1. Relationship between statistical inference and generative processes.

A generative approach for statistical estimation consists of two phases. First, a full
probabilistic generative model is defined, in which prior probabilities have been as-
signed to all of the hidden variables. After the model has been defined, Bayesian
inference can be used to obtain the posterior distribution of the parameters. These
parameters can either be general, describing the whole data set structure, or more
specific information about local structures in the data set (i.e. a network).

As shown in Figure 4.1, a generative process can be postulated to generate a network
from a set of parameters. Statistical inference is the reverse process: It can be used to
retrieve a distribution over the set of parameters that could have generated the net-
work. However, because of uncertainty, the exact parameters that originally generated
the network cannot be obtained.

A good model describes well the data that is being analyzed. It should be possible to
incorporate all the information available on the problem into the model. However, in
many cases a compromise has to be made between model richness and computational
efficiency.

4.3 Parameter inference

In Bayesian analysis, the joint distribution of all the variables of the problem is mod-
eled. Typically only some of the variables are of practical interest. The aim is to
obtain the distributions of these parameter values of interest, without regard to the
uninteresting nuisance parameters. This process of removing the nuisance parameters
is called marginalization, and it is essentially integration of the joint distribution over
the unnecessary parameters y,

p(x|c) =
⁄

y
p(x, y|c) . (4.4)
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In the case of discrete parameters, this is the same as summing over the parameters.
For two variables, of which y is the parameter to be eliminated, the marginalization
can be expressed as

p(x|c) =
|y|
ÿ

i

p(x, yi|c) . (4.5)

In practice, realistic or interesting models tend to be large and consist of many interact-
ing elements, which makes exact inference of the parameters impossible. Sometimes,
some of the parameters can be found exactly while others have to be inferred using
an approximate method.

The typical approaches for parameter inference are Markov Chain Monte Carlo (MCMC)
sampling and methods based on the EM algorithm. These two approaches are pre-
sented below.

4.3.1 Sampling

The idea with sampling methods is to draw a random sample from the posterior distri-
bution without having to infer the distribution exactly (Bolstad, 2004). Gibbs sampling
(Geman and Geman, 1984) is a widely applicable MCMC method for sampling the
posterior distribution. It can be seen as a special case of the Metropolis-Hastings algo-
rithm (see, e.g., Bishop, 2006). The idea is that the value of each parameter is updated
iteratively conditioned on the values of all the other parameters. This chain of values
converges to the joint distribution of the parameters.

A property of Markov Chain sampling is that it converges to a stationary distribution,
which in the case of MCMC methods is the distribution from which we are interested
in generating samples (Griffiths and Yuille, 2006). This means that given enough time,
we can be certain that the Gibbs sampling procedure converges to the true posterior
distribution over the parameters.

Ideally the sampling process is iterated until the estimations converge. Often the
convergence is assessed by eye, based on a data plot of some convergence measure.
Usually the algorithm is first iterated without taking any samples from it. This is called
the burn in period of the algorithm. Then a number of samples is taken and posterior
probabilities are estimated as an average of the samples.
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4.3.2 The EM algorithm

Another approach for finding model parameters is to find the local maximum (mode)
of the posterior distribution of the parameters, or alternatively finding the maximum
likelihood estimate of the model. When the model is a mixture, these approaches
usually lead to the EM algorithm. The EM algorithm (Dempster et al., 1977) alternates
between estimating the parameters from the latent variable values (the E step), and
estimating the latent variables based on the parameter values (the M step) (Griffiths
and Yuille, 2006).

Variational methods are a generalization of the EM, where mode of a lower bound of
the posterior distribution is found, by approximating the posterior distribution with
some simple (factorizable) parametrized form.

4.4 Challenges with sampling

In mixture models with symmetry over the components, two common challenges are
determining when the algorithm has converged, and avoiding label switching, that is,
mixing of the components so that the meaning of the components changes during
the sampling process.

4.4.1 Convergence of sampling

Several methods have been proposed for assessing whether a Gibbs sampler has reached
convergence (Geweke, 1992, Ritter and Tanner, 1992). However, none of the methods
can guarantee that the series has converged when the values seem to have reached a
stationary plateau. This has been noticed also in practice when using Markov chain
methods (Gelman, 1996). Often, to be able to answer questions about convergence,
one would have to understand well the distribution that is sampled. Barber (2006)
states that when the distribution is well-understood, then usually some exact tech-
nique would be preferable and no sampling would be needed.

Gelman (1996) gives two simple and practical approaches for analyzing convergence.
The first is to run multiple parallel simulations and compare their results. The second
is to run a test for a long time to make sure that it has reached the final plateau.

4.4.2 Label switching

When running simulations where items are assigned to groups or modeled with mix-
tures of distributions, permuting the component labels does not change the likelihood
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or the posterior distribution. This means that in a clustering with C clusters, there are
C! different modes in the posterior (Geweke, 2007).

A sampler may end up fluctuating between these modes. This can lead to the ordering
of the groups in a simulation to change from one simulation to another, or even in
the middle of a simulation. This makes it hard to take averages of the probabilities
of group assignments, because the group labels may have changed. This behavior is
called label switching.

If an algorithm averages distributions for individual parameters over the modes, the
result may become total nonsense. However, when using MCMC methods, such
as Gibbs sampling, it is typical that no switching between modes occurs. This is
because the algorithm typically converges to only one mode. In theory, the Gibbs
sampling procedure should explore all of the symmetric modes. However, in practice,
the probability of a transition between the modes may be so small that the transition
never happens in practice.

Two approaches can be used to overcome label switching. One is to add some kind
of identification constraints to the components. This is often difficult to implement
in practice. The second is to post-process the results and to identify matching labels
in the samples by using some similarity measure and clustering algorithms.

4.5 Distributions

There are a number of versatile probability distributions that can be used in con-
structing probabilistic models. In the next chapter, a probability model is introduced
that includes Dirichlet distributions as the priors of the latent variables. This section
presents the Dirichlet distribution, and its relationship to the multinomial distribu-
tion.

The multinomial and the Dirichlet are two particularly useful probability distribu-
tions for modeling statistical problems with nominal data. The main reason for this
is that the Dirichlet is the conjugate prior for the parameters of the multinomial dis-
tribution. This means that in a Bayesian problem, where the likelihood function is
multinomial and the prior is Dirichlet, then also the posterior distribution is Dirichlet.
This is convenient in constructing generative processes, because it makes the posterior
distribution algebraically tractable.

Binomial distribution is a discrete probability distribution that returns the number of
successes in a sequence of n independent true/false experiments, when the probability
of success is the same in every experiment. However, in many problems independent
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experiments may take more than two values. This repeated selection from a set of
outcomes can be modeled as a multinomial distribution.

The multinomial distribution can be explained with a series of experiments, where
in each experiment the outcome can be one of finite k outcomes with probabilities
◊ = (◊1, . . . , ◊k) (Gelman et al., 2003, page 83). The multinomial distribution gives
the probability distribution for a certain vector of counts c = (c1, . . . , ck) for the
outcomes in a sequence of n independent experiments. The probability of a count
vector c is

p(c|◊) Ã Mult(c) =
n!

r

ci!

Ÿ

◊ci
i , (4.6)

where
q

◊i = 1.

The Dirichlet is a multivariate generalization of the beta distribution, in a similar way
as multinomial distribution generalizes the binomial distribution (Gelman et al., 2003,
page 582). It gives the probability density that the probabilities of k outcomes are ◊

given that the counts for the observations are ωi ≠ 1. It is defined as

p(◊|ω) Ã Dir(ω) =
Γ(

q

ωi)
r

Γ(ωi)

Ÿ

◊ωi≠1
i , (4.7)

where ◊i Ø 0,
q

◊i = 1 and ω Ø 0.

In the Bayesian context one may form a hierarchy of distributions, where the counts
c are conditioned on the multinomial parameters ◊, which are further Dir-distributed
with parameter ω. The hyperparameter ω can be seen as a vector of ”virtual” counts,
before seeing the actual counts c (Minka, 2003). The posterior is then

p(◊|c, ω) Ã p(c|◊)p(◊|ω) = Dir(ω + c) . (4.8)

When using Dirichlet distributions, it is often feasible to assign the same value to the
hyperparameters ω, that is, ωi = s for all i, where s Ø 0. The probabilistic meaning
of this would be that a priori the counts for all of the observations are the same.
This vector of hyperparameters ω is called a symmetric hyperparameter. As a notational
convenience, one may write simply ω = s and Dir(ω).

Figure 4.2 shows plots of the Dirichlet distribution over three variables on the simplex
where the probabilities sum to one. In the left plot ω = 0.1, in the center plot
ω = 1.0, and in the right plot ω = 10.0. The value ω = 1.0 corresponds to a uniform
probability density and means that the same probability is assigned to any vector ◊
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(a) (b) (c)

Figure 4.2. Dirichlet distribution for three dimensions with parameter values ω = 0.8 (a),
ω = 4.0 (b), and ω = 10.0 (c). Darker colors indicate larger probabilities.

that is on the simplex plane (Gelman et al., 2003). As can be seen in the figure, when
ω < 1, the probability mass tends to concentrate in the corners while ω > 1 leads to
a probability mass that is in the centre of the simplex.

On the other hand, when the number of dimensions is large, even with ω = 1.0, most
probability mass is close to the corners of the simplex, even though the probability
density is still uniform. This is related to the curse of dimensionality, which states that
in large-dimensional spaces most of the volume is close to the corners and far away
from the center.



Chapter 5

A latent component model for networks

In this chapter a latent component mixture model for networks (the M0 model), is
presented, as well as an algorithm based on Gibbs sampling that can be used to ef-
fectively infer the model parameters (the M0 algorithm). First, a simple model for a
fixed number of components is introduced. This model is extended to a version that
allows an infinite number of components. In practice, this means that the number of
components required for modeling the problem is automatically selected, although it
still depends on hyperparameters.

5.1 Model introduction

The M0 algorithm has been inspired by and is similar in its structure to Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), also known as multinomial PCA (mPCA) (Buntine,
2002), and other latent component models that have been developed for text docu-
ment analysis and clustering (e.g., Hofmann, 1999). Some of these models use Dirich-
let priors on observables in a similar fashion as the M0 model. The model parameters
are typically estimated using either variational methods or Gibbs sampling.

It is worth noting that in the text analysis terminology component, which corresponds to
a latent parameter in the hierarchical model, is different from the meaning of the word
in network context, where it is used when referring to directly or indirectly connected
groups of nodes. Nevertheless, in this and following chapters the meaning of latent
component is borrowed from text analysis, and it is used as a common name for the
latent parameters of the M0 model, which correspond to both diffuse latent traits and
cluster-like structures in the network.

The M0 algorithm is based on a deceivingly simple model of network growth. The
model creates non-weighted networks having symmetric edges. The idea behind the
model is that there are a number of latent components that generate a network. Each
edge in the network is created by just one latent component. On a social network this

34
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Figure 5.1. A demonstration of the principles behind the M0 model.

would mean that, if latent components correspond to traits, each edge represents one
trait connecting the two persons.

The ideas behind the generative M0 model are illustrated in Figure 5.1. The columns
on the left represent latent component probabilities for nodes (users) while the graph
on the right shows the connections between the nodes as a graph. Each user, labeled
with A-J, belongs with some probabilities to the three latent components labeled with
Music, Sports and Cooking. Based on these probabilities a network can be generated by
selecting for each edge first the latent component for the edge and then sampling the
edge endpoints from the node probabilities of the latent components. On the right
side is a social network between the users which could have been generated from the
probabilities.

It is interesting to compare the M0 model to the models of friendship formation
discussed in Section 2.4. The latent components in the model can be interpreted as
something similar to the foci by Feld (1981). Moreover, the base idea of the model,
i.e., users sharing traits are more likely to be connected, is well supported by the
theories and observations in sociology.

The model does not cover many properties of friendship networks, such as models that
change in time. Moreover, the M0 model cannot represent heterophily in networks.
As noted earlier, there are other algorithms, such as the one proposed by Newman
and Leicht (2006), which can find both heterophilic and homophilic structures in a
network.

5.2 The finite mixture model

Based on the ideas presented above, a generative model for networks can be con-
structed. In the model, the component probabilities are drawn from a Dirichlet dis-
tribution. This type of model is called a finite mixture model. In finite mixture models,
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data is assumed to have been generated from a mixture with a pre-determined number
of components (see, e.g., McLachlan and Peel, 2000, pages 5-6). The term is slightly
deceiving, because the model is not only finite but also of fixed-size. Thus, in the infer-
ence of the model parameters, the number of components has to be specified.

The following generative model is used to generate a network from the underlying
probability distributions:

1. Draw ◊ from Dir( –
C )

2. For each component c in C components:

(a) Draw mc from Dir(—)

3. For each of E edges:

(a) Draw a latent component z from ◊

(b) Draw the first end point vi from mz

(c) Draw the second end point vj from mz .

In this generative model, a multinomial distribution ◊ is first generated over the C

components from the Dirichlet distribution Dir( –
C ). Then for each c, a multinomial

distribution over the N nodes is assigned by sampling the multinomial parameters
from the Dirichlet distribution Dir(—). After m and ◊ have been set up, new edges
can be generated by first picking a latent component z from ◊ and then selecting
the edge endpoints with probabilities mz. By repeating this process for E times. A
network with E edges is obtained as an output of the process.

The main reason for the form of the hyperparameter for distribution over compo-
nents, –

C , is that it makes it more convenient to derive the conditional link proba-
bilities in Section 5.3.2. In addition, the form is motivated by the fact that in this
way, the effect of the prior on the posterior is constant and does not depend on the
number of components C (see, Navarro et al., 2006).

Plate models can be used to present relational data graphically (Heckerman et al.,
2004). The plate model representation of the generative model for M0 is shown in
figure 5.2. In the model, nodes are variables, arrows indicate dependencies between
the variables and plates represent replicated structures (Buntine, 1994).

5.2.1 Joint distribution

The first part of solving a Bayesian inference problem is to derive the joint distribution
of all the variables in the model. From the joint distribution, all the necessary distri-
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Figure 5.2. Plate model representation of the M0 generative process.

butions can be obtained by integrating out (i.e., marginalizing over) the parameters
that are not needed. The joint distribution for the Dirichlet prior model is

p(L, Z, m, ◊|–, —) = p(L, Z|m, ◊) ◊ p(m|—) ◊ p(◊|–)

=
Ÿ

l

◊Zl
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(5.1)

where the Dirichlet distribution normalizer D(X, ›) = Γ(›)X/Γ(X›) (for symmetric
parameters ›), Z is the set of observed components for each edge, L is the set of edges,
N is the number of nodes, and C is the number of observed components. Further, vi

and vj are the endpoints of the edge l, n is a vector containing counts for edges for
each component, and kz is the vector of the number of edges in component z.

For notational convenience, the normalizing parameters depending on –, —, E and
C are denoted with B( –

C , —). Γ(·) is the Gamma function, a generalization of the
factorial function with the property Γ(z) = (z ≠ 1)!.

5.2.2 Conditional link probabilities

In theory, one could obtain the posterior distribution by sampling directly from the
joint distribution presented in Equation 5.1, and then averaging over parameters that
are not needed. This means simply discarding the nuisance parameters and calculating
the average over samples for the parameters of interest. However, in practice, this
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would be relatively hard because of the size of the parameter space. Instead, if possible,
it makes sense to integrate over unnecessary parameters analytically.

The ◊ and m parameters are not actually needed, since the main thing that is of
interest, in our case, in the inference are the component assignments Z for each of the
edges. Based on these assignments, approximations for ◊ and m can be reconstructed.
Following Griffiths and Steyvers (2004), marginalizing over ◊ and each of the mz, the
joint distribution of the edges and component probabilities is obtained:

p(L, Z|–, —) =
⁄

m,◊
p(L, Z, m, ◊) dm d◊

= B(
–

C
, —)

⁄

m

Ÿ

iz

mkzi+—≠1
zi dm
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◊

Ÿ

z

◊
nz+ –

C ≠1
z d◊

= B(
–

C
, —)

Ÿ

z

r

i Γ(kzi + —)

Γ(2nz + N—)

r

z Γ(nz + –
C )

Γ(E + –)
.

(5.2)

Typically not all unnecessary variables can be marginalized. Instead, one may inte-
grate away some of the nuisance variables and sample over the others with MCMC
methods, such as Gibbs sampling. This is called Rao-Blackwellization. As shown by
Casella and Robert (1996), this leads to an estimator with a smaller variance than
what would be obtained by using only Monte Carlo sampling. Sometimes the Gibbs
sampling procedure based on the marginalized equation is referred to as collapsed Gibbs
sampling.

An efficient collapsed Gibbs sampling procedure is to sample sequentially the com-
ponent for each edge from the component probability distribution of that edge, given
all the other links and component assignments in the network. The latter is obtained
by separating one edge, say l0, from the product in Equation 5.2. The edge l0 is asso-
ciated with one component z0 and connected to two nodes i0 and j0. kÕ, nÕ and EÕ

denote counts as if the link l0 would not exist at all. Based on this,

p(L, Z|–, —) = p(LÕ, Z Õ, l0, z0)

= p(LÕ, Z Õ) ◊ p(l0, z0|LÕ, Z Õ)

= B(
–

C
, —)

Ÿ

z

r

i Γ(kÕ
zi + —)

Γ(2nÕ
z + N—)

r

z Γ(nÕ
z + –

C )

Γ(EÕ + –)

◊
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(2nÕ
z0

+ 1 + N—)

(kÕ
z0j0

+ —)

(2nÕ
z0

+ —)

(nÕ
z0

+ –
C )

(EÕ + –)
.

(5.3)

Thus, the conditional probability of component z0 given all the other links and com-
ponent assignments is proportional to p(l0, z0|LÕ, Z Õ), that is
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p(z0|LÕ, Z Õ) Ã p(l0, z0|LÕ, Z Õ)

Ã
(kÕ
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(kÕ
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(2nÕ
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+ –
C )

(EÕ + –)
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(5.4)

5.3 The infinite mixture model

A significant limitation with the finite mixture model is that the number of compo-
nents has to be known beforehand. In many problems it would be reasonable to
assume that the number of components, such as different types of interactions be-
tween people, is infinite, although only the most common forms of interaction are
observed in practice.

The problems with the finite component model can be overcome by using an infinite
mixture model, e.g., a Dirichlet Process (DP) mixture model. In the DP model, instead
of drawing components from a finite dimensional Dirichlet distribution, a Dirichlet
Process with countably infinite number of components is used.

The Dirichlet Process is a generalization of Dirichlet distribution for an infinite num-
ber of components, of which only a finite number are observed in practice. It allows
the model complexity to grow when the amount of data increases. The Dirichlet Pro-
cess was constructed by Freedman (1963) and the statistical theory for the process was
detailed by Antoniak (1974), Ferguson (1973).

The generative model presented in Section 5.2 can be converted to the Dirichlet Pro-
cess model by sampling ◊ from a Dirichlet Process instead of an Dirichlet distribu-
tion:

1. Draw ◊ from DP (–)

2. For each of the ∞ components:

(a) Draw mz from Dir(—)

3. For each of L edges:

(a) Draw a latent component z from ◊

(b) Draw first end point vi from mz

(c) Draw second end point vj form mz .

What is peculiar about this model is that in theory, mz is drawn for each of the com-
ponents in ◊, that is, over an infinite component count. However, in the inference
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of component probabilities, this does not pose a practical problem, since the compo-
nents are created first when they are needed, as described in Section 5.3.2.

5.3.1 Joint distribution

In a similar way as for the Dirichlet prior model, the joint distribution for the Dirichlet
Process model is

pDP (L, Z, m|–, —) = p(L|Z, m) ◊ p(m|—) ◊ p(Z|–)

=
Ÿ
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r
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(5.5)

In the infinite mixture model, the probability of observing a partition can be obtained
by applying the formulas in Tavare and Ewens (1997),

pDP (L, Z, m|–, —) =
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(5.6)

where –[2E] is the Pochhammer symbol,

x[n] = x(x + 1)(x + 2) . . . (x + n ≠ 1)

=
Γ(x + n)

Γ(x)
.

(5.7)

5.3.2 Conditional link probabilities

As for the finite model, the probability of a component for a certain link can be
calculated conditioned on the components of the other links,

pDP (z0|LÕ, Z Õ) Ã pDP (l0, z0|LÕ, Z Õ) . (5.8)
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Following Navarro et al. (2006), Neal (2000), by letting C æ ∞ in equation 5.4, the
probability of an existing component z0 is proportional to pDP (l0, z0|LÕ, Z Õ),

pDP (z0|LÕ, Z Õ) Ã
(kÕ

z0i0
+ —)

(2nÕ
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(kÕ
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(EÕ + –)
, (5.9)

and the probability of a new component znew is proportional to pDP (l0, znew|LÕ, Z Õ),

pDP (znew|LÕ, Z Õ) Ã —

(1 + N—)

—

(N—)

–

(EÕ + –)
. (5.10)

The equations above can be used directly in Gibbs sampling by conditionally sam-
pling the component for each edge. This is similar to the finite mixture model, the
only difference is that the count vectors for the components have to scale up to ac-
commodate the new components when they are created. Implementation details of
the sampling procedures are discussed in detail in section 5.5.

In addition to taking the limit of pDP (z0|LÕ, Z Õ) as described above, there are a number
of other methods to generate samples from a Dirichlet Process. Two approaches are
the stick-breaking construction (Sethuraman, 1994) and the Chinese Restaurant Process
(CRP), which is closely related to the Blackwell-MacQueen Pólya Urn presented by
Blackwell and MacQueen (1973).

The Chinese Restaurant Process leads to exactly the same partition as the equations 5.9
and 5.10 above (Navarro et al., 2006). The name comes from Chinese restaurants in
San Francisco that have a seemingly infinite capacity. The process works as follows.
Each person who enters the restaurant is given a seat next to a table with customers,
based on the seatings of all previous customers. People are likely to be placed in the
popular tables. However, with probability –, the customer may also be placed in a
new table. This process is repeated for all the customers.

The Pólya Urn representation uses a different metaphor of essentially the same pro-
cess. Colored balls are drawn from a urn with a probability proportional to their mass.
One of the balls is black and has the mass – while all the others have a mass of one.
Each time a ball is drawn, it is placed back in the urn and another ball of the same
color is added. When a black ball is drawn, it is put back in the urn and a ball of a
new color is added.

Both of these allegories illustrate the clustering behavior of the DP. The new observa-
tions are likely to take the same values as the previous ones. For large – many clusters
will form while a small – leads to just a few clusters.
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The clustering of the samples drawn from the DP does not depend on the order in
which the clusters are assigned to items, i.e., the items are said to be exchangeable

(Blei et al., 2003). In the CRP setting this means that how the persons entering the
restaurant cluster around tables does not depend on the order in which the persons
arrive. This is a natural justification for a Gibbs sampling procedure based on the
DP.

5.3.3 Marginal likelihood

The posterior probability of the data given the model, in this case pDP (L|–, —), is
often called either the marginal likelihood of the hyperparameters or the evidence of the
model. It is a useful measure when performing sampling of the posterior distribution,
because it can be used to monitor convergence of the sampling process and to evaluate
the result of the inference.

The marginal likelihood is obtained by marginalizing over the parameters from the
likelihood function. In the case of a sampling process this is estimated by an average
over S samples, that is

pDP (L|–, —) =
⁄

m,◊,z
p(L, Z, m, ◊|–, —) dm d◊ dZ

≈ 1

S

S
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(5.11)

where p(L|Z, m, ◊) =
r

iz mkzi
zi , as in the joint distribution, and x(t) denotes the

value of x in sample t. The likelihood can also be obtained precisely from the joint
distribution in equation 5.5 by marginalizing over m and dividing with p(Z|–),
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In practice, it is often useful to operate with the logarithm of the likelihood, which
replaces the products and divisions with sums and subtractions. This yields

log pDP (L|Z, –, —) = C (log Γ(N—) ≠ N log Γ(—))
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5.4 Hyperparameter values

In the model, the hyperparameters – and — control the Dirichlet distributions from
which the component mixture and the components for the edges are drawn.

Parameter – is constant for all latent components, thus the a priori knowledge about
the sizes of all latent components are the same and the model cannot represent cor-
relation between the latent components. A large – implies that all the latent compo-
nents are of the same size, while with a small – the latent components are with a high
probability of different sizes.

Likewise, the hyperparameter — is same for all nodes. This means that a priori the
component distribution of each node is the same. The effect of a large — is that a
node is expected to belong to many components, while a small beta leads to the node
belonging only to a small number of components. By varying the – and — parameters
different properties in the network can be found. Small — values lead to more discrete
communities, while large — values find smoother latent component structures.

5.5 Implementation of the algorithm

The algorithm in itself is quite straightforward to implement. However, an effective
implementation for huge networks requires optimizations.

Three versions of the implementations are presented. The first one is the simplest
possible, which uses arrays for storing vectors that are updated during the iteration
process. The second implementation replaces the sampled component structures with
hash tables. The third implementation further improves the algorithm performance
and memory requirements by using a self balancing binary tree to store the component
probabilities.

5.5.1 Simple implementation

The simplest way to implement the M0 algorithm using a Gibbs sampling is to repre-
sent all the required node and edge properties as dense arrays and, in each iteration,
update these data structures as needed. With this implementation, lookup, insertion,
and removal can be performed in constant time.

The simplest implementation of Gibbs sampling requires the following data struc-
tures:

• L[edges]: a list of edge endpoints

• Z[edges]: current latent component of each edge
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• K[nodes, components]: the component-wise node degree

• A[components]: the count of edges in a component

• P [components]: latent component probability distribution, used in the iteration

Algorithm 1, presented on a separate page, shows the pseudocode for Simple-Gibbs-
Sampling, which takes as its input a list of edges and the hyperparameters, and cal-
culates values of Z and K. In practice, multiple samples of Z and K are taken. By
averaging over them, distributions over Z and K are obtained.

The algorithm proceeds by iteratively sampling new values for Z for each edge. First
the current K values for both edge end nodes and A are updated to subtract the effect
of the current edge. Then a latent component probability distribution P is calculated
and a new component value is sampled from the distribution and stored in Z.

The worst-case running time of the simple implementation on a network with N

nodes, E edges, C components and I iteration rounds is O(INC). The memory
consumption for this simple implementation scales as O(NC + E + C).

The algorithm requires memory structures for storing the latent components of each
of the nodes in the network. This makes the simple implementation infeasible to
use with large networks and many components. However, in practice, each node is
connected only to a small subset of nodes. The number of components a node can
belong to is upper-bounded by the degree of the node.

This approach works well for a small amount of static components, but when the
number of components grows, this method slows down because P needs to be cal-
culated for every component. Another problem with large component counts is that
the memory requirement for K grows when the amount of components grows.

5.5.2 Hash table implementation

An easy way to improve the memory efficiency of the implementation is to use hash
tables over K instead of dense matrices to represent the latent components. Thus,
each K[nodes] contains a pointer to a hash table for the components in the node.

Calculating effectively P for an edge in the hash table implementation is somewhat
more complicated than with the simple implementation. First, all probabilities for
the components in the start node of the edges are calculated. Then, the probabilities
for the components in the end node that were not updated for the start node are
calculated. Finally, all the other probabilities are updated.

By replacing the dense data structures with sparse hash tables, the average memory
consumption can be lowered to O(Nd + E + C), where d is the mean degree of the
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Algorithm 1 Simple-Gibbs-Sampling A simple implementation for the M0 algoritm

Simple-Gibbs-Sampling(–, —, L)

tnodes Ω node count
for c Ω 1 to components do ✄ initialize data structures

A[c] Ω 0
for n Ω 1 to tnodes do K[n, c] Ω 0

for i Ω 1 to iterations do ✄ main iteration loop
foreach l in L do

vi Ω first node of l
vj Ω second node of l
if i ”= 1 do

zold Ω Z[l]
decrement K[vi, zold], K[vj, zold], A[zold]

ptot Ω 0
for c Ω 1 to components do

pc Ω Calc-Probability(A[c], K[vi, c], K[vj, c], tnodes, –, —)
P [c] Ω pc

ptot Ω ptot + pc

znew Ω Sample-Index(P, ptot)
Z[l] Ω znew

increment K[vi, znew], K[vj, znew], A[znew]
return K, Z

Calc-Probability(nc, ka, kb, tnodes, –, —)

return
(ka + —)(kb + —)(nc + –)

(2nc + 1 + —tnodes)(2nc + —tnodes)

Sample-Index(P, ptot)

r Ω uniform random number in [0.0, ptot]
psum Ω 0
foreach pcur in P do

psum Ω psum + pcur

if ppsum Ø r do
return index of pcur
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network. Since d = 2E/N , memory consumption scales as O(E+C). Thus, memory
consumption grows linearily with respect to the number of edges in the network. The
lookup, insertion and removal of elements from a hash table has O(1) complexity,
which means that the running time of the algorithm is O(INC) even with the sparse
implementation.

5.5.3 Binary tree implementation

The hash table implementation consumes clearly less memory than the simple im-
plementation. However, both the simple and the hash table based implementations
suffer from the fact that for each edge, the probabilities for each latent component
have to be recalculated, even if they would remain the same. Moreover, the sampling
from the set of discrete probabilities can be slow, which is a problem if the number
of components is many thousands.

To solve these problems, the component probabilities can be stored in a tree data
structure. A tree consists of tree types of nodes: a root node, which is the topmost
node that doesn’t have any parents, internal nodes, which have child nodes, and leaf
nodes, which are on the bottom of the tree and do not have any child nodes.

In the tree, each node represents a component and is assigned a weight which is relative
to the default probability of sampling the component. Then for each edge in every
iteration, only the probabilities that have been changed need to be recalculated. After
the latent component Z for an edge has been sampled from the tree, the tree can
be reverted back to its default form. The structure of the tree is described in detail
below.

The tree used in the implementation is a self-balancing binary tree called Arne Ander-
sson tree (AA tree) (see, e.g., Weiss, 1998, pages 474-481). Other self-balancing binary
trees would be of equivalent performance. Weights have been added to the nodes of
the tree, and when the weight of a node is changed, the modifications are propagated
up to the parents of the node.

The use of a tree in sampling is similar to the method described by Wong and Easton
(1980). The problem is as follows. A random sample of size k from items s1, ..., sn

needs to be drawn, where the items si are associated with weights wi. An item should
be drawn with a probability proportional to the weight of the item. Wong and Easton
(1980) suggest to set up a binary tree of height O(log(n)) in time O(n) in a prepro-
cessing step and using this tree as detailed below. Generating the tree takes O(log(n)),
and updating the elements has the same cost.
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Figure 5.3. Updating of the partial sum tree. Nodes and weights in black are in their default values.
Nodes and weights in red have been recalculated and updated for the edge. Weights for
components 1, 11 and 59 have been updated and propagated to their parents, so that
the partial sums are correct. Clearly, the most likely component for this edge is 1 and
has 98% probability of being sampled. After a component has been sampled for the
edge, all the values marked in the figure with red are recalculated, reset to their default
values and propagated to their parents.

In the probability tree, for each node, three floating-point numbers are stored: the
weight of the node (probability), the sum of weights for the left children of the node
and the sum of the weights for the right children of the node. This kind of tree is called
a partial sum tree. When any of the values are updated for a node, the corresponding
changes are propagated to its parents. Figure 5.3 shows the state of the partial sum
tree, when the tree has been updated to reflect the probabilities of the components
for a single edge.

With these optimizations to the sampling of the components, the average running
time can be lowered down to O(IEd log(C)). In many networks E and N are of the
same order of magnitude, which means that the average running time is essentially
O(IE log(C)). That is, the implementation scales linearly in the number of nodes
and logarithmically in the amount of components.

With the binary-tree implementation, latent components for the edges can be inferred
for networks with hundreds of thousands of nodes and thousands of components. The
binary tree approach works perfectly for the Gibbs sampling, because the tree has to
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be generated only in the beginning of the sampling process, and after that only the
elements that have been modified are updated in the tree. Blue et al. (1995) provide
another method for using binary trees in improving Monte Carlo simulations.



Chapter 6

Experimental setup

In the experiments, the aim is to find out how well the M0 algorithm performs at
finding clusters in networks. The following questions form the basis of the experi-
ments:

• What heuristics can be used to select the hyperparameter values for the algo-
rithm?

• How well does the algorithm converge?

• Does the algorithm work on small networks?

– Do the clusters correspond to known groups?

– Are the clusterings good in terms of modularity?

• What is the performance of the algorithm on a large friendship network?

– Is the algorithm memory consumption and running time such that it can
be used on networks with hundreds of thousands nodes?

– Do the clusters correspond to relevant structures, such as interests or na-
tionalities of the users?

The experiments are divided into three parts. First, it is analyzed how the parameters
– and — affect the number of communities found and the modularity of the com-
munity division in the network. This is done to get a rough picture of the effects of
the parameters. Next, based on the results from the first part, the algorithm is tested
on several small networks which are known to exhibit modular structure, and the re-
sults are compared to those achieved with the hierarchical fast community algorithm.
Finally, a large-scale test is performed by analyzing a friendship network from the
Last.fm online music recommendation service.

49
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6.1 Material

In addition to the implementation of the M0 algorithm, the material consists of small
test networks and a large friendship network collected from Last.fm.

6.1.1 Small test networks

Small and medium-sized networks from several domains are used in testing the algo-
rithm (Table 6.1). The networks have been shown to exhibit community structure. All
of the networks can be seen as standard test networks for community algorithms. All
of the networks have a clustering coefficient that is magnitudes larger than the same
value for a random network (see Equation 3.3), which would indicate that they have
community structure. However, the clustering coefficients for the PGP and Email net-
works are clearly smaller than the clustering coefficients for the other networks.

Table 6.1. Small networks used in testing the algorithm. In the table, n is the number of nodes
in the network, m is the number of edges, d is the mean degree, and c is the clustering
coefficient.

Network n m d c
Karate 34 78 4.59 0.57
Football 115 613 10.66 0.40
Jazz 198 2 742 27.70 0.62
Celegans 453 2 025 8.94 0.65
Email 1 133 5 451 9.62 0.22
PGP 10 680 24 060 4.68 0.09
Physicists 27 519 116 181 8.44 0.65

The Karate network originates from a study by Zachary (1977) on the social relation-
ships in a karate club. In the study, Zachary observed 34 members of a karate club for
two years. During this period, there was some disagreement among the club members
which led to the splitting of the club. The instructor of the club left and formed a
new club, which around half of the club members joined.

The Football network depicts American football games between Division IA colleges
during the fall season 2000. The nodes of the network represent football teams and
edges the games between the teams. There is a known community structure for the
network in the form of conferences. Teams are divided into conferences with around
8 to 12 teams in each. Games between teams that belong to the same conference are
more frequent than between teams that belong to different conferences. The commu-
nity structure for the network has been originally analyzed in Girvan and Newman
(2002).
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The Jazz network depicts collaborations among jazz musicians, who performed be-
tween 1912 and 1940 (Arenas, 2007, Gleiser and Danon, 2003). The Celegans net-
work is an undirected and unweighted version of the neural network of the worm
Caenorhabditis elegans (CDG, 2007, Watts and Strogatz, 1998). Email is a network
of e-mail interchanges between members of the University Rovira i Virgili (Arenas,
2007, Guimera et al., 2003). PGP represents the giant component of a trust network
of mutual signing of cryptography keys (Guardiola et al., 2002). Physicists is a co-
authorship network of physicists working on condensed matter physics, originally
from the arXiv.org database (Newman, 2001).

6.1.2 Last.fm data set

Last.fm is a personalized Internet radio where users may listen to music that matches
their interests. The system builds a profile of the musical interests of a user based on
the music the user has been listening to. This profile is used to recommend music
to the user. The profile, as well as other information on the user, is also visible on a
customizable home page of the user.

There are several social networking features incorporated into the Last.fm service.
Users may form groups or communities with other users. They have also the pos-
sibility to ask other Last.fm users to be their friends. Friendships are shown to others
on the home page of the user. The user can also see what music his friends are lis-
tening to in real time from his dashboard. Friendships are created by clicking on the
“add as friend” button on the friend’s user page. The friend has to accept the request
for a friendship to form. Last.fm friendships are always mutual (two-way), that is, if
user A is a friend of user B, then the opposite is also true and user B is a friend of user
A.

Users can also tag artists, albums, and tracks to create a classification of music styles.
Tags may either describe the music styles (“garage rock”, “electronica”), geographical
location (“finnish”) or any other characteristics such as “seen live”.

Last.fm has over 15 million unique active users every month (Lake, 2006). Of these,
780 000 users have listed at least one friend in their profiles (private communication
with Norman Casagrande). Thus, only a small minority of users on Last.fm is using
the friends-feature of the service. In addition, many people rather belong to groups
than form direct friendship connections. This might imply that there are two types
users on Last.fm: active users, who make use of the social networking services offered,
and those who use the service only as an online radio. In this research only the active
users are studied.



CHAPTER 6. EXPERIMENTAL SETUP 52

Last.fm allows fetching of user profiles, listening habits and friendship information
via the Audioscrobbler web services (AudioScrobbler, 2007). The data is licensed with
Creative Commons Attribution, NonCommercial, ShareAlike license, which means that
the data can be used in non-commercial purposes as long as the original source of the
data is accredited and derivative works of the data can be made as long as they are
licensed with the same terms (Creative Commons, 2007).

Previously music tastes of Last.fm users have been analyzed by Bergstra (2006) for
classifying music genres automatically. Liekens (2007) has got interesting preliminary
results about the relationships between different music tastes by clustering the music
tastes of the users using Principal Component Analysis. However, in these work the
social network of the Last.fm users was not used.

Crawled data

A crawler was implemented in Java 1.5 (Java, 2007) to fetch user friendship and profile
information via the web services. The information was stored into individual files on
the server and tools were implemented for distilling the information from these files
into a more easily managed form.

For testing the M0 algorithm, a friendship network with over 650 000 users was crawled
from the Audioscrobbler service. This crawl contains over 90% of Last.fm users with
friends and is clearly the main component of the Last.fm friendship network.

The Last.fm friendship network was crawled during March 2007 using depth-first
search, starting with a single user to fetch a snapshot of the whole network. Then,
in the beginning of April 2007, the profile information and the top artists of each user
were crawled.

The Last.fm user profiles do not tell which are the tags best matching a user. However,
these tags can be calculated based on the tags given to the artists the user has been
listening the most. For each user, the top ten artists they have been listening to were
crawled, and for each of these artists, their profiles were fetched from the Last.fm
service. By weighing the tags given to each of these artists, the top tags for each user
were calculated.

Subsets for experiments

In the experiments, the clustering results and the convergence of the algorithm are
analyzed for the full Last.fm network as well as the subset of users, who have identified
as being from the United States. In addition, for the purpose of visualizing the actual
connections between individuals and clustering of their relationships, the subset of
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users from Denmark and friendships between them are also clustered. Properties of
these networks are shown in Table 6.2.

Table 6.2. Networks crawled from Last.fm used to test the algorithm. In the table, n is the number
of nodes in the network, m is the number of edges, d is the mean degree, and c is the
clustering coefficient.

Network n m d c
Full Last.fm 675 682 1 898 960 5.62 0.24
Last.fm USA 147 610 352 987 4.78 0.23
Last.fm Denmark 2 374 4 345 3.66 0.32

Properties of data

In general, because Last.fm is a online radio and music sharing site, connections are
probably more likely between people with similar music tastes. However, as in other
online communities, there are several reasons why a Last.fm user would include other
users as his/her friends. One is to use the service for recommending music to friends
and receiving recommendations from them. Other reasons include “spying” what mu-
sic others are listening to, collection of friendships, and projecting social relationships
from real-world into the online domain.

When analyzing the Last.fm data, there are some potential pitfalls: the data may
be biased, values may be missing, and there may be outliers or incomplete entries
(Maimon and Rokach, 2005, pages 1292-1293). Not all users have a public profile
available and, because users can specify what they put in their profiles, there are also
outliers in the data. Also the tags used for classifying users contain many tags that
represent the same information and many different types of tags.

Figure 6.1(a) shows the distribution of Last.fm users in the countries with most users. A
clear majority of users have listed United States as their country of residence. However,
a close second is [None], which means that the user has not listed any country in their
profile. As shown in Figure 6.1(b), the most common tag for each user varies greatly
and has a long tail. This could imply that the range of music tastes of the users is
broad with lots of subcommunities.

The distribution of edges between users is shown in Figure 6.2(a). As is typical in
social networks and internet communities in particular, the degree distribution of the
network has a heavy tail. This means that most users have few connections, while
some have a lot. A similar behavior has been noted by Adamic et al. (2003) in the
“Nexus Net” social network. Figure 6.2(b) shows the age distribution of Last.fm users.
Most users seem to be around the age of 20. Because the users can choose themselves
what age they list in their profiles, some of the ages are outliers.
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Figure 6.1. Last.fm users in different countries (left) and the most common tags for all users in
Last.fm (right).
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Figure 6.2. Last.fm friendship degrees have a heavy tail (left) while the age distribution peaks at
around 21 years (right).
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Of all Last.fm users who have listed their gender, 66% are males and 34% females.
However, there are differences in the gender distribution between countries. For ex-
ample, in the US, the proportion of females is larger with the amount of males being
60% and females 40%.

6.2 Methods

In this section, the methods that are used in the experiments are presented. The results
of the experiments are given in the next chapter.

6.2.1 Algorithm implementation and analysis tools

The M0 algorithm was implemented in the Java 1.5 environment (Java, 2007). GNU
Trove library (Trove, 2007) was used for effective data structures, Cern Jet (2007) li-
braries were used for random number generation, and the Prefuse (2007) visualization
library served as basis for the network visualization engine.

The combination of the Dirichlet process model and the binary tree based implemen-
tation was chosen as the algorithm to be tested in the experiments, based on initial
tests. This is because it does not require the user to specify the number of clusters that
are searched for. In addition, the implementation is efficient in terms of memory and
computational requirements.

R statistical environment was used for the analysis of the data and plotting figures
from the algorithm runs. Heatmaps were drawn with the “heatplot” command from
the MADE4 library (Culhane et al., 2005, MADE4, 2007).

6.2.2 Assessing algorithm convergence

Two different measures are used for assessing how well the algorithm has converged.
The first measure is the marginal likelihood for the Dirichlet process model (equa-
tion 5.11) presented in Section 5.3.3. The second one is modularity (equation 3.4),
which is applied to the network divisions by selecting for each node the most likely
cluster based on the sampled posterior probability distribution.

6.2.3 Finding optimal hyperparameters

One challenge with the M0 algorithm, common to all algorithms with hyperparam-
eters, is how to choose the hyperparameter values. In the experiments, for the seven
small networks presented in Table 6.1 modularity, likelihood and node counts are
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calculated with – and — values ranging from 10≠7 to 103. These are plotted to give a
visual representation of how the hyperparameters affect the clustering.

6.2.4 Analyzing small networks

The algorithm is run with the hyperparameters that provided the best modularity to
see how well the algorithm performs compared to four different algorithms (Clauset
et al., 2004, Duch and Arenas, 2005, Girvan and Newman, 2002, Newman, 2006) for
finding communities, that is, hard clusterings of a network. How well the M0 algo-
rithm can perform as a community algorithm is evaluated by comparing the modu-
larity values obtained with it to the results from the community algorithms.

6.2.5 Clustering Last.fm friendship network

A problem with clustering the whole network is separating the effect of the geography
and other traits (homophily) from each other. This is why it is hard to say whether the
clustering represents the geography (countries) of the users or their music tastes. To get
a better understanding of how well the algorithm can separate users into groups based
on their music tastes, the algorithm is first run on the whole network and compared
to the tags of the users and then the algorithm is run on the subset of users in the
main component who are from the United States.



Chapter 7

Results

In this chapter, the effect of the hyperparameters on the algorithm results is first
demonstrated and the optimal hyperparameters in terms of modularity of the cluster-
ing are presented. Then, the algorithm is tested with small networks by using the hy-
perparameters from the previous phase and the results are compared to community al-
gorithms. Finally, the clustering of the Last.fm friendship network is presented.

7.1 Finding optimal hyperparameter values

The component count changes as a function of both the – and — parameter values.
Large – and small — lead to more components. The effect of hyperparameters affecting
the component count is also demonstrated for an artificial network in Figure 7.1.

(a) (b)

Figure 7.1. An artificial doughnut-shaped network, which demonstrates the effects of different hy-
perparameters. On the left, – = 2.0 and — = 2.0 and on the right, – = 10.0 and
— = 0.0001.

57
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Table 7.1. Optimal hyperparameter values for the small networks in terms of modularity.

Network Size n Clusters – —
Karate 34 4 0.025 0.05
Football 115 12 0.01 0.025
Jazz 198 3 0.01 0.5
Celegans 453 6 0.1 0.2
Email 1133 8 0.8 0.15
PGP 10 680 29 0.001 0.025
Physicists 27 519 14 2.0 0.1

Figure 7.2 shows the results of clustering four networks of different sizes with a range
of – and — hyperparameter values. As can be seen from the graphs, maximizing the
modularity of the solution with – and — tends to favor splits with only a few compo-
nents, which means smaller – values and larger — values than what would result from
maximizing the marginal likelihood. The largest likelihood values seem to be overfit-
ted, because even for small networks the component counts grow quite large.

The results seem to be quite robust to changes in –, while the choice of — affects the
results strongly. This could imply that by first selecting a rough value for – and then
running more tests for — could be a good heuristic for finding good hyperparameter
values. A prior distribution could be also assigned to the hyperparameters.

Based on the marginal likelihood values, reasonable estimate for the parameter values
would be – = 1 . . . 10 and — = 10≠3 . . . 10≠2. However, many of these values lead
to a large number of components. Moreover, in the figure, the optimal modularity
and likelihood are found in different areas, with the — being typically smaller for the
optimal modularity.

The tendency of the likelihood to prefer models with a large number of components
implies that the complexity of the model is over-estimated and overfitting occurs.
This could be avoided by performing further tests on leave-out data.

Table 7.1 displays the optimal hyperparameter values in terms of modularity for each
of the networks obtained with the exhaustive search. One observation which can be
made from the table 7.2 is that for the networks tested, the optimal hyperparameter val-
ues in terms of modularity tend to be smaller for larger networks. In the next section,
these hyperparameter values are used to compare the M0 algorithm to community
algorithms.

Since the results of the modularity and likelihood differ so dramatically, no general
rule can be given on the hyperparameter values leading to optimal clustering. In terms
of likelihood, a reasonable guess for the – value would be between 1 and 100 while
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Table 7.2. Network modularity with different algorithms. The hyperparameter values were ob-
tained with exhaustive search, see, Section 7.1.

Network Size n GN CNM EO N06 M0 Clusters – —
Karate 34 0.401 0.381 0.419 0.419 0.402 4 0.025 0.05
Football 115 0.601 0.577 - - 0.603 12 0.01 0.025
Jazz 198 0.405 0.439 0.445 0.442 0.443 3 0.01 0.5
Celegans 453 0.403 0.402 0.434 0.435 0.417 6 0.1 0.2
Email 1133 0.532 0.494 0.574 0.572 0.567 8 0.8 0.15
PGP 10 680 0.816 0.733 0.846 0.855 0.667 29 0.001 0.025
Physicists 27 519 - 0.668 0.679 0.679 0.701 14 2.0 0.1

the — which maximizes the likelihood is in the range from 0.001 to 0.01. For the
modularity, optimal – value seems to be between 0.001 and 100 while the optimal —

values are between 0.01 and 0.5.

7.2 Clustering small networks

The small test networks were clustered using the optimal hyperparameter values in
terms of the modularity of the clustering, which were found by exhaustive search over
the hyperparameter – and — values (see, Table 7.1). The results are shown in table 7.2.
This table shows the modularity, number of clusters and hyperparameter values for the
optimal values of the M0 algorithm. The modularity for the M0 algorithm has been
obtained by assigning each node into the component it belongs to with the highest
probability.

Table 7.2 also displays, for comparison, the modularities obtained with some popular
community algorithms. In the table, GN is the community algorithm by Girvan and
Newman (Girvan and Newman, 2002), EO refers to the Extremal Optimization algo-
rithm (Duch and Arenas, 2005), CNM is the fast community algorithm by Clauset,
Newman and Moore (Clauset et al., 2004), and N06 is a spectral algorithm presented
in Newman (2006). The comparison results are based on those published in Duch
and Arenas (2005), Newman (2004, 2006).

As can be seen from the figure, the M0 algorithm seems to perform reasonably well
compared to the other algorithms, even though it does not implicitly optimize mod-
ularity. For the small networks, only the N06 algorithm performs better than M0.
For the Email network, the result is slightly worse than that obtained using EO and
N06 algorithms and for the PGP network the result is clearly worse than that obtained
using the other algorithms. The bad result with the PGP network could be related to
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Figure 7.2. Results from running the clustering with a range of hyperparameter values. For each
network, the figure on the left shows the modularity of the network split, the figure on the
middle displays the likelihood of the result, and the rightmost figure shows the amount
of components in the solution on logarithmic scale.
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the small clustering coefficient of the network. The results for the Physicist network
outperform other approaches.

The strength of the approach compared with divisive methods, such as GN, and ag-
glomerative approaches, such as CNM, is that not only the most likely component
for each node is given, but also the probabilities of all the other cluster assignments
for each node. In addition, the clustering outcome can be also retrieved on the level
of edges, so that each edge is given an explanation in terms of the components, which
could have generated it. The main challenge with the M0 algorithm is the choice of
hyperparameter values.

7.2.1 Networks with known community structure

To validate the results of a clustering algorithm, it would be ideal to have a network for
which the correct division into groups is known. Yet, there are only a small number
of such networks commonly used in the literature. The clustering results with the M0
algorithm for two such networks, the Karate network and the Football network, are
presented in detail below.

Karate network

The clustering of the nodes in the Karate network is shown in Figure 7.3. The hyper-
parameter values – = 0.025 and — = 0.05 were obtained by exhaustive search, as
presented in Section 7.1.

The algorithm was able to determine almost perfectly the correct division of the net-
work into two groups. However, with these hyperparameter values, the algorithm
further subdivided one of the clusters into two smaller clusters, shown with green and
blue colors. The cluster assignment of the nodes on the borders of the clusters tends
to be fuzzy while the more remote nodes seem to belong almost solely to a single
cluster.

In addition, there are some nuisance clusters such as the ones shown in the figure
with yellow and pink colors. It would seem that some type of label switching has
occurred, because the yellow cluster matches almost exacly the red cluster. This is a
problem, because if no label switching would have occurred, node 9 in the middle
of the figure would have been assigned correctly because together the yellow and red
clusters would have won the majority voting.
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Figure 7.3. Two visualizations of the clustering result for the Karate network. On the left side,
node size represents the certainty of the cluster assignment and node color represents the
clustering. On the right side, for each node, a pie diagram is shown, which illustrates
the probabilities of the various clusters or components for each node. The dashed line
in both pictures shows the “correct” cluster division based on the splitting of the karate
club. – = 0.025 and — = 0.05.

Football network

The clustering results for the Football network are presented in Figure 7.4. As for
the other small networks, the hyperparameter values – = 0.01 and — = 0.025 were
obtained by exhaustive search (see, Section 7.1). As can be seen from the figure, the
algorithm found most conferences correctly, and even the number of clusters is almost
correct. However, some of the nodes were clustered into wrong conferences, especially
in the top right corner of the figure. Furthermore, two conferences on the right side
of the figure were incorrectly combined into one.

The node placement and node ids in Figure 7.4 are similar to those used by Clauset
et al. (2006). It is interesting to note that the clustering algorithm by Clauset et al.
(2006), which attempts to model statistically the hierarchical clustering of a network,
makes similar errors in classification as the M0 algorithm. Both of the algorithms fail
to identify the correct clusters in the top right corner. However, the algorithm by
Clauset et al. (2006) is able to divide the cluster on the right side of the figure (shown
with yellow color) correctly into two parts.
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Figure 7.4. Clustering result for the Football network. – = 0.01 and — = 0.025. Colored areas
show the borders of the conferences (that is, the correct clustering), while the node colors
represent the cluster assignments obtained using the M0 algorithm. The size of the
nodes illustrates the certainty of the cluster assignments.

7.2.2 Convergence of the small networks

Figure 7.5 shows the convergence of some of the small test networks in terms of both
the network likelihood given the model and modularity. For the small networks, these
measures tend to jump from one phase to another in one quick step (Football and Jazz
networks). The likelihood and modularity values have been calculated for individual
iteration samples only and give thus just point estimates of the real likelihood. For
the smallest networks, this makes it hard to assess the exact convergence.

For the most part, the modularity of the network increases monotonically with the
iterations. Only in the PGP and Jazz networks there is some later decrease in the
modularity. In all the networks, a quite good clustering in terms of modularity and
likelihood is found quite quickly (less than 1000 iterations). However, for many of the
networks, the likelihood improves slowly for a number of iterations after the initial
quick convergence. For example, for the Physicists network the likelihood reaches a
plateau after 25 000 iterations.
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Figure 7.5. Convergence of the small networks. In the figures, on the left side is plotted the sample
likelihood for the network for every iteration and on the right side the sample modu-
larity. Because the measures were calculated without averaging over multiple samples,
the values for especially the smaller networks fluctuate considerably.
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7.3 Clustering Last.fm friendship network

The full Last.fm network and the network of the US users were clustered using the
M0 algorithm. In this section, the clustering results for both of the networks are
compared to the music tags of the users. In addition, the Danish users of Last.fm
were clustered for the sake of visualizing how the actual connections between the
users look like.

7.3.1 Full Last.fm network

The clustering results for large networks cannot be visualized directly in form of a
network, as is the case with small networks. Thus, to get an understanding on the
clustering results, some type of proxy information has to be used. The aim is to
compare, how well the clusters correspond to other traits of the Last.fm users. Thus,
one solution is to create a traits ◊ clusters matrix. The elements of the matrix can
be sorted with hierarchical clustering methods so that traits occurring often in the
same clusters are presented close to each other. When colors are used to represent the
counts in each cell of the matrix, this type of visualization is called a heat map.

For each user, the tag that corresponds best to his music taste has been observed. In
the case of hard clustering, for each user, one could simply increment the value of
the cell {tag, cluster} by one. However, in fuzzy clustering, the user is a member of
multiple clusters, and for each of the clusters a user belongs to, the cell {tag, clusteri}
has to be incremented proportionally to the degree the user belongs to the cluster. For
example, if a user listens only to music tagged with japanese, and belongs to cluster
A with a degree of 0.5 and to cluster B with a degree of 0.5, then for that user, the
values in both the cell {japanese, cluster A} and {japanese, cluster B} are incremented
with 0.5.

Figure 7.6 shows the clustering result of the main component of the Last.fm network
data as a heat map. Burn-in period for the full Last.fm network was 19000 iterations to
ensure the convergence of the sampling process. After the burn-in period, 20 samples
were taken at intervals of 50 iterations. More samples could have been used as well.
In the Figure 7.6, smallest components with less than 20000 members are not shown.
The figure shows that there is a correlation between the music tags and the clusters,
in which the nodes have been assigned. This can be seen as long blue rows of tags,
which correspond strongly to certain components. No tags seem to be particularly
likely in the last cluster.

Tags corresponding to nationalities are common in some of the clusters. The first
cluster from the left (A) contains not only listeners of alternative rock but also those
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who listen music tagged with japanese, russian, and polish tags. The second cluster (B)
corresponds to those who listen to metal music. The third cluster (C) contains both
the electronic music styles, and the tag swedish. Tags in the fourth cluster (D) are
related to alternative, and hard core music styles. The only strong tag in the last cluster
is trance.

Comparing the clustering with the tags of the users has its problems, because the
clusters could also be explained by nationalities of the users, which in turn affect the
music tastes. This effect might also explain the tags corresponding to the nationalities,
observed above. The nationalities of the users can be seen in Figure 7.7, where the
labels A-D used for the components are the same as in the Figure 7.6. Correlation
between nationalities and clusters seems to be even stronger than between tags and
clusters. An interesting detail is that seemingly remote areas are put into the same
clusters, such as Finland and China or Estonia and Argentina.
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Figure 7.6. The whole Last.fm main component clustered into five clusters and plotted together
with the tag counts in each group. In the figure, each column corresponds to a music
tag given by the users of Last.fm. Only the 80 most popular tags are shown. The color
of a cell in the grid depicts, how likely it is for a user who listens to that tag (column)
to belong to the particular cluster (row). Blue means that more than expected users
belong to that particular cluster, while cells that are red correspond to clusters which are
unpopular among the users who listen to that particular tag. – = 0.3 and — = 0.3.

7.3.2 Last.fm USA network

Because geographical location would seem to affect strongly the Last.fm social net-
work structure, the effects of homophily and proximity are impossible to analyze
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Figure 7.7. The whole Last.fm main component clustered into five groups (rows) with the countries
of the group members (columns). – = 0.3 and — = 0.3.

independently for the network clustering. One alternative solution to diminish the
effect of geography and nationality is to concentrate on a smaller population of the
network, which does not divide into the self-evident clusters based on countries.

The challenges caused by geography are one motivation to study the network formed
by Last.fm users from the USA separately. However, even this does not eliminate the
problem of having the geography affect the clustering, since even in the USA, there
are many strong, local areas, and musical styles are often more popular in some parts
of the country than in others.

In a similar fashion to the full network, Figure 7.8 displays the clustering of the Last.fm
users from United States as a heat map. The burn-in period was 49000 iterations after
which 20 samples were taken with 50 iterations interval.

New hyperparameter values were chosen for the Last.fm USA network, because the
values depend on the size of the network. Slightly smaller hyperparameter values
where used (– = 0.2 and — = 0.2) than with the full Last.fm network, which as a side
effect led to finding more clusters (8).

The users seem to partition well into different clusters based on their music taste.
Cluster A contains those who listen to pop and country music, as well as listeners of
britpop. Cluster B consists of listeners of electronic music, jazz and British alternative
rock music from the 80’s (new wave and 80s). Cluster C consists of experimental rock
music, with tags such as indie pop, folk and experimental. Many of the tags are however
shared with the users from cluster B. Cluster D is strongly described by the listening of
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Japanese and metal music. Cluster E has a strong community of listeners of Christian
music. Cluster F contains music styles related to hip hop and hardcore punk while
the only tags that rise above the average in cluster G are punk and ska. The cluster H
cannot be easily explained using any of the tags.

In the Figure 7.8 some clusters are quite clearly bounded, such as cluster D with the
listeners of Japanese and metal music, while the music tastes of others overlap, such as
those belonging to clusters B (electronica, jazz) and C (indie pop, folk). Even though
the cluster H does not strongly explain any music tastes, the users belonging to it seem
to favor more metal and hardcore music than rock or indie pop.
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Figure 7.8. The Last.fm users from United States belonging to the main component clustered into
eight groups with their tags. – = 0.2 and — = 0.2.

7.3.3 Likely and unlikely tags

Table 7.3 shows the tags that correspond best and worst to the components (i.e. clus-
ters) found in the Last.fm US network. It displays in more detail what tags are more
likely and unlikely in each of the components than on average.

The tables have been obtained by calculating the occurrence counts of each of the tags
in every component. Then, for every tag, it has been calculated how much more or less
likely the tag is in each component than it would be based on marginal probabilities.
Finally, a binomial test was performed with p = 0.05 to remove from the tables the
tags which do not differ notably from the expected probabilities. The numbers in the
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(a)

Cluster A
juggalo 1.36
pop 1.34
musicals 1.32
Canadian 1.09
female vocalists 0.85
shoegaze ≠1.76
Sludge ≠1.89
black metal ≠1.98

(b)

Cluster B
shoegaze 1.35
Alt-country 1.24
post-punk 1.22
idm 1.15
new wave 1.15
post-hardcore ≠1.62
screamo ≠1.79
pop punk ≠3.16

(c)

Cluster C
indie 0.46
post-rock 0.30
folk 0.22
Stoner Rock ≠1.84
visual kei ≠1.86
j-pop ≠2.08

(d)

Cluster D
j-pop 1.69
visual kei 1.68
black metal 1.56
death metal 1.53
japanese 1.53
indie rock ≠1.19
post-punk ≠1.21
psychedelic ≠1.41

(e)

Cluster E
christian 1.53
podcast 1.01
trance 0.87
new age 0.70
Grunge 0.43
visual kei ≠1.46
shoegaze ≠1.54
Sludge ≠1.68

(f)

Cluster F
rnb 1.33
screamo 1.21
pop punk 1.15
post-hardcore 1.07
hardcore 1.05
post-punk ≠1.66
Korean ≠2.25
psytrance ≠2.48

(g)

Cluster G
Jam 1.35
ska 0.89
hardcore 0.47
punk 0.40
indie 0.11
rnb ≠1.36
visual kei ≠1.43
j-pop ≠2.28

(h)

Cluster H
latin 1.13
chinese 1.05
psytrance 0.70
Korean 0.68
trance 0.51
Alt-country ≠0.58
synthpop ≠1.54
juggalo ≠1.62

Table 7.3. The most likely and unlikely tags for each of the components in the Last.fm United States
network.
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table are the logarithms of the ratio between the observed and expected probabilities
of the tags.

The five most likely and three least likely tags are displayed for each of the clusters.
For cluster C, only the three most likely tags are displayed, because the rest of the tags
which occurred often in the cluster were eliminated in the binomial test.

Interest of Japanese music, represented with the tags j-pop, visual kei and japanese is
strong in cluster D. However, in other clusters, such as C, G and E the japanese music
styles seem to be quite unlikely. Another tag with similar concentration into one
cluster is shoegaze. It is popular cluster B, but not much used in clusters A and E. Even
other opposition pairs exist: juggalo between cluster A and H, black metal between A
and D and rnb between clusters F and G.

Although the different clusters seem to differ strongly in terms of tags used, some tags
are likely in more than one components. These are trance, which is found in both the
clusters H and E, and hardcore that is listened by members of cluster F and G.

To conclude, by looking at the tags that differ from the average use of tags by a wide
margin, we note that quite different types of music listening habits are present in the
clusters, and some clusters, like C and D, seem to be opposites in terms of music
interests. This would seem to indicate that the algorithm is able to group users based
on their interests. Many of the separations are quite strong: in every cluster there are
some tags that are 3-5 times more likely in that cluster than on average.

7.3.4 Convergence of the clustering for Last.fm networks

Figure 7.9 shows plots of the modularity and likelihood of samples for the Last.fm
and Last.fm United States networks. Surprisingly, the sampling for larger network
converges clearly faster than that for the smaller network of users from the United
States only. This might be due to the different hyperparameters and the larger number
of components found for the US network.

7.3.5 Close-up view of the Last.fm Denmark network

In Figure 7.10 a close-up view of the network with 2374 Danish Last.fm users is shown.
Each node represents one person. The color of a node represents the most probable
cluster for the person while the label of a node is the tag that is used most commonly
to describe the bands listened by the user. Node size is determined by the certainty
of the clustering result. The larger the node, the larger the certainty there is about its
group.
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Figure 7.9. Convergence of the full Last.fm network (top) and of the United States subset of Last.fm
network (bottom). Note that the scale of the horizontal axis is different in the figures
because of the differing amount of iterations.

The first thing that can be seen from Figure 7.10 is that making a good visualization
of even a quite small network like this is difficult because of the small-world structure,
which connects remote nodes to each other. However, even in this type of visualiza-
tion, some structures can be seen. One is the cluster in the bottom right corner of the
figure, which consists of girls listening to gothic music (cluster with pink color) and
boys that are friends with these girls (cluster of five nodes with dark purple color). The
algorithm has effectively separated these two groups into separate components.

Another property revealed by the visualization is that with small hyperparameter val-
ues the components found seem to describe quite local structures. This would mean
that with these parameters, the algorithm works essentially in a similar way as com-
munity algorithms.
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Figure 7.10. A close-up view of the results from clustering the Danish Last.fm users. In the clus-
tering, – = 0.001 and — = 0.01.



Chapter 8

Conclusions and discussion

This chapter begins by evaluating the results of the work based on the research prob-
lem and questions presented in Chapter 1. Then, ideas for further research are pre-
sented related to further validation of the algorithm, ways to improve the model, and
approaches to enhancing the performance of the implementation.

8.1 Evaluation

In this thesis, clustering of nodes in networks has been studied. A clustering algo-
rithm based on the generative M0 model has been compared to other algorithms
based on the modularity measure, and results of the clustering have been evaluated
with both small networks and a large friendship network collected from the Last.fm
online service. In addition, the algorithm convergence and the choice of optimal
hyperparameter values have been discussed.

The aim of this thesis has been to address the research problem:

By using only friendship network topology, can individuals be clustered into groups that differ in
traits such as interest, language and gender?

In general, it seems, that friendship topology does separate users into distinct groups
and the interests of the users in different groups differ in a number of ways. However,
it is difficult to assess, whether the clusters found represent some globally optimal
clustering, or whether it is just one possible division of the network among many
equally good explanations.

In addition to the research problem, also five subquestions were posed. Below, the
subquestions are discussed in detail. Both previous research and the empirical findings
are used to answer the questions.

1. Based on previous research, is it plausible that friendships can be used to predict traits of
the individuals?

73
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Research in the field of sociology clearly supports the theory that similar people
tend to interact with each other. However, also other factors guide friendship
formation, such as people introducing friends to each other and geographical
location.

2. Can the M0 method be used in finding clusters from a friendship network?

Tests with both small and large networks show that the M0 approach is effective
at finding meaningful clusters in many kinds of networks. Yet, the usefulness
of an algorithm depends not only on the result it gives but also on how easy it
is to use, including the amount of manual tuning it requires. The selection of
hyperparameter values for the algorithm is often difficult, which reduces its use-
fulness. Thus, ways to make the selection easier will clearly need some further
research.

3. Based on the clustering, is it possible to make some conclusions about the traits affecting the
friendships of the individuals?

In the Last.fm network, there was a strong correlation between the clustering
results and the musical interests. However, it is possible that the shared musical
interests depend on the geographical locations of the users, since even music
taste can be local. Structures that depict geographical information are typically
not as interesting as other traits, since they can be estimated directly from in-
formation on users, without the need to use friendship networks.

Thus, it is difficult to evaluate, whether it is possible to extract information
about traits, such as values or interests, from a friendship network, or if the
network just illustrates the geographical locations of its members. Yet, the results
from the Last.fm USA network give a suggestion that friendships could predict
also other traits than the geographical location.

4. Does the algorithm find local clusters in a network (communities) or more diffuse latent
component structures (traits)?

It seems that the algorithm can find both small, local structures and more diffuse
components. By changing the hyperparameter values, the algorithm can be used
flexibly to find both clusters of different sizes, and clusters which have different
characteristics. The number of clusters scales from a few up to thousands. When
the number is large, the clusters correspond to the local neighborhoods of the
nodes.

However, the effects of the various hyperparameter combinations are not fully
clear. A question remains, whether the more diffuse components are just fuzzy
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clusters or whether they can be made to reflect some real global properties of
the nodes.

5. How well does the method compare with other approaches in terms of clustering results and
algorithm speed?

Comparison of the results with community algorithms that optimize modular-
ity are promising. When good hyperparameter values are used and in a favorable
setting, the algorithm is an effective community algorithm. For two of the test
networks, it outperformed all the hierarchical clustering algorithms, with which
it was compared.

The M0 algorithm is not optimal for all clustering tasks, since it is slower than
the fastest agglomerative methods. However, the strength of the method is the
fuzzy assignment of nodes to clusters, where a node can belong to a number
of clusters simultaneously. This allows assessing the confidence of the cluster
assignments and detection of different roles in the network, such as the nodes
which are central in the clusters and those that are members of multiple clusters.

8.2 Applicability of the results

Although the research on the M0 algorithm is still in its early phases, the algorithm
and this study may be of interest to those working with networks, such as sociologists,
physicists and computer scientists. The algorithm is easy to implement, and can be
used to study various types of structural data. The model can be incorporated into
larger network analysis systems as a method for reducing the dimensionality of the
data. The same model can also be used for other purposes than simple clustering of
nodes, for example in the prediction of future links or in the estimation of missing
labels in the data. Moreover, by extending the model, many possibilities emerge
for analyzing various types of sparse relational data sets, including web forums and
citation networks.

For the company, Xtract Ltd, this study provides valuable insight on the properties of
the M0 algorithm and its applicability for analyzing huge networks. The optimized
implementation and tests performed on networks of different sizes should make it rel-
atively easy to get the algorithm into production use. In addition, during this study,
information was gained on the sociological basis of network analysis, which is ap-
plicable both in understanding customer problems and in devising new methods for
analyzing social networks.
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8.3 Future work

Some promising results obtained using the M0 model have been presented in this
work. However, the research on the M0 model and on latent component models for
networks in general is still in its first stages. As can be seen from the answers in the
previous section, open questions remain related to the use and functioning of the
algorithm. There is also a wide range of directions for further research. These can
be divided into four categories: validation, improvement, performance optimization, and
further possibilities.

8.3.1 Validation

The algorithm performance could be further validated by making more extensive com-
parison of the results with other algorithms. Furthermore, although the algorithm was
shown to find clusters that differ in the traits of their members, a more detailed analysis
could reveal how well the traits can be predicted based on the clustering results.

The understanding of the properties of the model are still limited. Further tests need
to be performed to determine if label switching occurs when running the model for
long times and with dense networks. Also, the effect of increasing the number of
samples that are taken during the sampling process needs to be tested.

Moreover, the validity of the generative model could be evaluated by generating net-
works using the M0 model with parameters inferred from real networks. The char-
acteristics of these networks, such as degree distribution and clustering coefficient,
could be compared to those of the original network, to assess how well the model can
capture the patterns in the network.

8.3.2 Improvement

The generative model could be improved to incorporate more information about net-
work structure, such as weights on edges, directional edges and node attributes. These
might improve the quality of the clustering results and the predictive power of the
algorithm.

The selection of hyperparameters is currently difficult. Some effort should be put
into making the use of the hyperparameters easier, such as adding an uninformative
prior to the hyperparameters. For this, ideas could possibly be borrowed from other
mixture models with Dirichlet priors.

The Dirichlet distributions used in the algorithm provide a flexible, non-informative
prior for the model. Nevertheless, some properties, such as correlation between the
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components, cannot be easily explained using Dirichlet distributions. One approach
to overcome this problem would be to try to replace the Dirichlet distribution with a
logistic normal distribution in a similar fashion to Blei and Lafferty (2005) and Ahmed
and Xing (2007).

8.3.3 Performance optimization

It should be possible to improve the performance of the algorithm by distributing
the Gibbs sampling process on multiple CPUs (central processing units). Moreover,
it might be possible to improve the algorithm speed with other adjustments, such
as implementing some of the core procedures with a lower level language, for exam-
ple C. Maybe even larger performance improvements could be achieved by further
evaluation of EM and Variational approaches to parameter estimation.

8.3.4 Further possibilities

All in all, in addition to the testing and optimizing of the M0 algorithm, a lot of in-
teresting topics related to studying networks have come up during this work. Because
the field of study is constantly evolving, behind just about every corner there is an
opportunity for exciting research.

There are many unexplored possibilities for using methods from the network sciences
in information systems. In one way or another, intelligent search engines and so-
cial networking services will most certainly use networks for recommending products
based on the behavior of other users, and for visualizing to users the relationships
between people or pieces of information.

Network algorithms can be incorporated into the analysis of all types of interaction,
such as marketing research, fraud detection and analysis of biological structures. In
article databases, networks made from citations can be used to join redundant items,
and to find articles that are important in a field. Moreover, fast algorithms devised
for studying networks can be used even in such surprising fields as labeling structures
in computer vision, semantic web research, and even game theory.

Nevertheless, more knowledge is still needed on how networks evolve, what networks
from various sources have in common, and what tools are useful in the specific do-
mains. Understanding the actual problems, and the subjects that are studied, serves
as a natural starting point for developing better methods and algorithms for network
analysis.
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